Answer :

Sure, let's solve the equation step-by-step for [tex]\( x \)[/tex]:

Given:

[tex]\[ -4x + 5 = -8x + 21 \][/tex]

1. Move all terms involving [tex]\( x \)[/tex] to one side and constants to the other side:
- To start, we can add [tex]\( 8x \)[/tex] to both sides to get rid of the [tex]\( -8x \)[/tex] on the right side.

[tex]\[ -4x + 8x + 5 = 21 \][/tex]
[tex]\[ 4x + 5 = 21 \][/tex]

2. Isolate the term with [tex]\( x \)[/tex]:
- Next, we subtract 5 from both sides to move the constant term to the right side.

[tex]\[ 4x + 5 - 5 = 21 - 5 \][/tex]
[tex]\[ 4x = 16 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
- Now, to isolate [tex]\( x \)[/tex], we divide both sides by 4.

[tex]\[ x = \frac{16}{4} \][/tex]
[tex]\[ x = 4 \][/tex]

So, the solution to the equation [tex]\( -4x + 5 = -8x + 21 \)[/tex] is:

[tex]\[ x = 4 \][/tex]