Question 25 (1 point)

If [tex][tex]$f(x) = 2x - 3$[/tex][/tex], what is [tex][tex]$f(2a)$[/tex][/tex]?

Type in your answer: [tex][tex]$f(2a)=$[/tex] \qquad[/tex]



Answer :

To find [tex]\( f(2a) \)[/tex] given that [tex]\( f(x) = 2x - 3 \)[/tex], you need to substitute [tex]\( 2a \)[/tex] into the function [tex]\( f \)[/tex] in place of [tex]\( x \)[/tex].

Here's the step-by-step solution:

1. Substitute [tex]\( 2a \)[/tex] in place of [tex]\( x \)[/tex] in the function [tex]\( f(x) = 2x - 3 \)[/tex]:
[tex]\[ f(2a) = 2(2a) - 3 \][/tex]

2. Multiply the constants and the variable inside the parenthesis:
[tex]\[ 2(2a) = 4a \][/tex]

3. Simplify the equation by subtracting 3 from [tex]\( 4a \)[/tex]:
[tex]\[ f(2a) = 4a - 3 \][/tex]

Therefore,
[tex]\[ f(2a) = 4a - 3 \][/tex]

Other Questions