Answer :
To find [tex]\( f(2a) \)[/tex] given that [tex]\( f(x) = 2x - 3 \)[/tex], you need to substitute [tex]\( 2a \)[/tex] into the function [tex]\( f \)[/tex] in place of [tex]\( x \)[/tex].
Here's the step-by-step solution:
1. Substitute [tex]\( 2a \)[/tex] in place of [tex]\( x \)[/tex] in the function [tex]\( f(x) = 2x - 3 \)[/tex]:
[tex]\[ f(2a) = 2(2a) - 3 \][/tex]
2. Multiply the constants and the variable inside the parenthesis:
[tex]\[ 2(2a) = 4a \][/tex]
3. Simplify the equation by subtracting 3 from [tex]\( 4a \)[/tex]:
[tex]\[ f(2a) = 4a - 3 \][/tex]
Therefore,
[tex]\[ f(2a) = 4a - 3 \][/tex]
Here's the step-by-step solution:
1. Substitute [tex]\( 2a \)[/tex] in place of [tex]\( x \)[/tex] in the function [tex]\( f(x) = 2x - 3 \)[/tex]:
[tex]\[ f(2a) = 2(2a) - 3 \][/tex]
2. Multiply the constants and the variable inside the parenthesis:
[tex]\[ 2(2a) = 4a \][/tex]
3. Simplify the equation by subtracting 3 from [tex]\( 4a \)[/tex]:
[tex]\[ f(2a) = 4a - 3 \][/tex]
Therefore,
[tex]\[ f(2a) = 4a - 3 \][/tex]