Myra owns a car service that charges a [tex]$\$[/tex]5[tex]$ flat rate and an additional $[/tex]\[tex]$0.50$[/tex] per mile, which is represented by the equation [tex]$y = 0.5x + 5$[/tex], where [tex]$x$[/tex] is the number of miles and [tex]$y$[/tex] is the total cost.

How much is the total cost for a car with 30 miles?

A. [tex]$\$[/tex]10[tex]$
B. $[/tex]\[tex]$15$[/tex]
C. [tex]$\$[/tex]20[tex]$
D. $[/tex]\[tex]$35$[/tex]



Answer :

To determine the total cost for a car service that travels 30 miles, we can use the given equation for the total cost [tex]\( y \)[/tex], where [tex]\( y = 0.5x + 5 \)[/tex] and [tex]\( x \)[/tex] represents the number of miles.

Given [tex]\( x = 30 \)[/tex] miles, we can substitute [tex]\( x \)[/tex] into the equation and solve for [tex]\( y \)[/tex] as follows:

1. Substitute [tex]\( 30 \)[/tex] for [tex]\( x \)[/tex] in the equation [tex]\( y = 0.5x + 5 \)[/tex]:
[tex]\[ y = 0.5 \times 30 + 5 \][/tex]

2. First, calculate [tex]\( 0.5 \times 30 \)[/tex]:
[tex]\[ 0.5 \times 30 = 15 \][/tex]

3. Next, add the flat rate of $5 to the result:
[tex]\[ y = 15 + 5 \][/tex]

4. Adding these values together gives us:
[tex]\[ y = 20 \][/tex]

Therefore, the total cost for traveling 30 miles is [tex]\( \boxed{20} \)[/tex] dollars.