Select the correct answer.

Find the solution(s) for [tex][tex]$x$[/tex][/tex] in the equation below.

[tex][tex]$x^2 - 25 = 0$[/tex][/tex]

A. [tex][tex]$x = -5$[/tex][/tex]
B. no solutions
C. [tex][tex]$x = 5$[/tex][/tex]
D. [tex][tex]$x = 5 ; x = -5$[/tex][/tex]



Answer :

To solve the equation [tex]\( x^2 - 25 = 0 \)[/tex], let's follow these steps:

1. Start with the given equation:
[tex]\[ x^2 - 25 = 0 \][/tex]

2. Move the constant term to the right side of the equation to isolate the [tex]\( x^2 \)[/tex] term:
[tex]\[ x^2 = 25 \][/tex]

3. Take the square root of both sides to solve for [tex]\( x \)[/tex]:
[tex]\[ x = \sqrt{25} \quad \text{or} \quad x = -\sqrt{25} \][/tex]

4. Simplify the square roots:
[tex]\[ \sqrt{25} = 5 \quad \text{and} \quad -\sqrt{25} = -5 \][/tex]

So, we end up with two solutions:
[tex]\[ x = 5 \quad \text{and} \quad x = -5 \][/tex]

Therefore, the correct answer is:
[tex]\[ \text{D. } x = 5 ; x = -5 \][/tex]