For the function [tex]f(x) = -4x^2 + 24x + 3[/tex], what is the axis of symmetry? Be sure to enter it as an equation, not just a number.

[tex]\square[/tex]



Answer :

To determine the axis of symmetry for the quadratic function [tex]\( f(x) = -4x^2 + 24x + 3 \)[/tex], follow these steps:

1. Identify the coefficients from the quadratic equation [tex]\( ax^2 + bx + c \)[/tex]:
[tex]\[ a = -4, \quad b = 24, \quad c = 3 \][/tex]

2. The formula for the axis of symmetry of a quadratic equation is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]

3. Substitute the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula:
[tex]\[ x = -\frac{24}{2 \cdot (-4)} \][/tex]

4. Simplify the expression inside the fraction:
[tex]\[ x = -\frac{24}{-8} \][/tex]

5. Simplify the fraction:
[tex]\[ x = 3 \][/tex]

Therefore, the axis of symmetry for the quadratic function [tex]\( f(x) = -4x^2 + 24x + 3 \)[/tex] is:
[tex]\[ x = 3 \][/tex]