Given [tex]p(x)=\frac{1}{x-2}[/tex], what is the value of [tex]p(-1)[/tex]?

A. [tex]-\frac{1}{3}[/tex]
B. [tex]\frac{-3}{1}[/tex]
C. [tex]-3[/tex]
D. 1



Answer :

To determine the value of [tex]\( p(-1) \)[/tex] for the function [tex]\( p(x) = \frac{1}{x - 2} \)[/tex], we need to follow these steps carefully:

1. Identify the function: We are given the function [tex]\( p(x) = \frac{1}{x - 2} \)[/tex].

2. Substitute the given value into the function: We are asked to find [tex]\( p(-1) \)[/tex]. Thus, we will substitute [tex]\( x = -1 \)[/tex] into the function.

3. Perform the substitution:
[tex]\[ p(-1) = \frac{1}{-1 - 2} \][/tex]

4. Simplify the expression in the denominator:
[tex]\[ -1 - 2 = -3 \][/tex]

5. Complete the calculation:
[tex]\[ p(-1) = \frac{1}{-3} = -\frac{1}{3} \][/tex]

Therefore, the value of [tex]\( p(-1) \)[/tex] is [tex]\( -\frac{1}{3} \)[/tex].

So, the correct answer is:
[tex]\[ -\frac{1}{3} \][/tex]