Answer :

To simplify the expression [tex]\((3x - 5) - (5x + 1)\)[/tex], follow these steps:

1. Distribute the negative sign across the second term in the expression:
[tex]\[ (3x - 5) - (5x + 1) \Rightarrow (3x - 5) - 5x - 1 \][/tex]

2. Rewrite the expression without parentheses:
[tex]\[ 3x - 5 - 5x - 1 \][/tex]

3. Combine like terms:
- Combine the [tex]\(x\)[/tex]-terms: [tex]\(3x - 5x\)[/tex]
- Combine the constants (numbers without [tex]\(x\)[/tex]): [tex]\(-5 - 1\)[/tex]

This gives:
[tex]\[ 3x - 5x - 5 - 1 \Rightarrow (3x - 5x) + (-5 - 1) \][/tex]

4. Simplify each part:
- For the [tex]\(x\)[/tex]-terms: [tex]\(3x - 5x = -2x\)[/tex]
- For the constants: [tex]\(-5 - 1 = -6\)[/tex]

Putting it all together, we get:
[tex]\[ -2x - 6 \][/tex]

Thus, the simplified expression is:

[tex]\[ -2x - 6 \][/tex]