Choose the correct simplification of [tex]\left(7 x^3 y^3\right)^2[/tex].

A. [tex]14 x^6 y^8[/tex]

B. [tex]49 x^5 y^5[/tex]

C. [tex]49 x^6 y^6[/tex]

D. [tex]14 x^5 y^5[/tex]



Answer :

To simplify the expression [tex]\(\left(7 x^3 y^3\right)^2\)[/tex], follow these steps:

1. Apply the power to the constant:
[tex]\[ (7)^2 = 49 \][/tex]

2. Apply the power to each variable separately using the power rule of exponents [tex]\((a^m)^n = a^{mn}\)[/tex]:
For [tex]\(x^3\)[/tex]:
[tex]\[ (x^3)^2 = x^{3 \cdot 2} = x^6 \][/tex]
For [tex]\(y^3\)[/tex]:
[tex]\[ (y^3)^2 = y^{3 \cdot 2} = y^6 \][/tex]

3. Combine all the parts:
[tex]\[ 49 x^6 y^6 \][/tex]

Thus, the correct simplification of [tex]\(\left(7 x^3 y^3\right)^2\)[/tex] is:
[tex]\[ 49 x^6 y^6 \][/tex]

Therefore, the answer is:
\[
49 x^6 y^6
\