Answer :

To simplify the expression [tex]\((4xy)(2x^2y)(3xy)^3\)[/tex], follow these steps:

1. Expand [tex]\((3xy)^3\)[/tex]:

[tex]\[ (3xy)^3 = 3^3 \cdot x^3 \cdot y^3 = 27x^3y^3 \][/tex]

2. Combine the expressions:

[tex]\[ (4xy)(2x^2y)(27x^3y^3) \][/tex]

3. Multiply the coefficients:

[tex]\[ 4 \cdot 2 \cdot 27 = 216 \][/tex]

4. Combine the [tex]\(x\)[/tex] terms:

[tex]\[ x \cdot x^2 \cdot x^3 = x^{1+2+3} = x^6 \][/tex]

5. Combine the [tex]\(y\)[/tex] terms:

[tex]\[ y \cdot y \cdot y^3 = y^{1+1+3} = y^5 \][/tex]

Putting it all together, the simplified expression is:

[tex]\[ 216 x^6 y^5 \][/tex]

Thus, the correct choice is:

[tex]\[ \boxed{216 x^6 y^5} \][/tex]