Answer :
To simplify the expression [tex]\((4xy)(2x^2y)(3xy)^3\)[/tex], follow these steps:
1. Expand [tex]\((3xy)^3\)[/tex]:
[tex]\[ (3xy)^3 = 3^3 \cdot x^3 \cdot y^3 = 27x^3y^3 \][/tex]
2. Combine the expressions:
[tex]\[ (4xy)(2x^2y)(27x^3y^3) \][/tex]
3. Multiply the coefficients:
[tex]\[ 4 \cdot 2 \cdot 27 = 216 \][/tex]
4. Combine the [tex]\(x\)[/tex] terms:
[tex]\[ x \cdot x^2 \cdot x^3 = x^{1+2+3} = x^6 \][/tex]
5. Combine the [tex]\(y\)[/tex] terms:
[tex]\[ y \cdot y \cdot y^3 = y^{1+1+3} = y^5 \][/tex]
Putting it all together, the simplified expression is:
[tex]\[ 216 x^6 y^5 \][/tex]
Thus, the correct choice is:
[tex]\[ \boxed{216 x^6 y^5} \][/tex]
1. Expand [tex]\((3xy)^3\)[/tex]:
[tex]\[ (3xy)^3 = 3^3 \cdot x^3 \cdot y^3 = 27x^3y^3 \][/tex]
2. Combine the expressions:
[tex]\[ (4xy)(2x^2y)(27x^3y^3) \][/tex]
3. Multiply the coefficients:
[tex]\[ 4 \cdot 2 \cdot 27 = 216 \][/tex]
4. Combine the [tex]\(x\)[/tex] terms:
[tex]\[ x \cdot x^2 \cdot x^3 = x^{1+2+3} = x^6 \][/tex]
5. Combine the [tex]\(y\)[/tex] terms:
[tex]\[ y \cdot y \cdot y^3 = y^{1+1+3} = y^5 \][/tex]
Putting it all together, the simplified expression is:
[tex]\[ 216 x^6 y^5 \][/tex]
Thus, the correct choice is:
[tex]\[ \boxed{216 x^6 y^5} \][/tex]