Inverse Functions: Tutorial

18 of 29

Problem 1: Verify whether these two functions are inverses:
[tex]\[ f(x)=\frac{(x+5)}{(2x+1)} \text{ and } g(x)=\frac{(5-x)}{(2x-1)} \][/tex]

What is [tex]\[ g(f(x)) \][/tex]?

Use your keyboard and the keypad to enter your answer. Then click Done.



Answer :

To verify whether the given functions [tex]\( f(x) = \frac{x + 5}{2x + 1} \)[/tex] and [tex]\( g(x) = \frac{5 - x}{2x - 1} \)[/tex] are inverses, we need to find [tex]\( g(f(x)) \)[/tex] and confirm if it simplifies to [tex]\( x \)[/tex].

Let's start by finding [tex]\( g(f(x)) \)[/tex]:

1. Determine [tex]\( f(x) \)[/tex]:

[tex]\[ f(x) = \frac{x + 5}{2x + 1} \][/tex]

2. Substitute [tex]\( f(x) \)[/tex] into [tex]\( g(x) \)[/tex]:

The function [tex]\( g(x) \)[/tex] is defined as:

[tex]\[ g(x) = \frac{5 - x}{2x - 1} \][/tex]

We need to substitute [tex]\( f(x) \)[/tex] into [tex]\( g(x) \)[/tex]:

[tex]\[ g(f(x)) = g\left(\frac{x + 5}{2x + 1}\right) \][/tex]

For [tex]\( g(f(x)) \)[/tex], we replace [tex]\( x \)[/tex] in [tex]\( g(x) \)[/tex] with [tex]\( \frac{x + 5}{2x + 1} \)[/tex]:

[tex]\[ g\left(\frac{x + 5}{2x + 1}\right) = \frac{5 - \left(\frac{x + 5}{2x + 1}\right)}{2\left(\frac{x + 5}{2x + 1}\right) - 1} \][/tex]

3. Simplify the numerator:

[tex]\[ 5 - \frac{x + 5}{2x + 1} \][/tex]

Find a common denominator and subtract:

[tex]\[ 5 - \frac{x + 5}{2x + 1} = \frac{5(2x + 1) - (x + 5)}{2x + 1} = \frac{10x + 5 - x - 5}{2x + 1} = \frac{9x}{2x + 1} \][/tex]

4. Simplify the denominator:

[tex]\[ 2\left(\frac{x + 5}{2x + 1}\right) - 1 = \frac{2(x + 5)}{2x + 1} - 1 \][/tex]

Find a common denominator and subtract:

[tex]\[ \frac{2(x + 5) - (2x + 1)}{2x + 1} = \frac{2x + 10 - 2x - 1}{2x + 1} = \frac{9}{2x + 1} \][/tex]

5. Combine the simplified parts:

Now combining the numerators and the denominators, we get:

[tex]\[ g\left(\frac{x + 5}{2x + 1}\right) = \frac{\frac{9x}{2x + 1}}{\frac{9}{2x + 1}} = x \][/tex]

Thus, we see that:

[tex]\[ g(f(x)) = x \][/tex]

This confirms that given functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are indeed inverses of each other.