What is the product of [tex]\frac{x}{3}[/tex] and [tex]\frac{6}{x}[/tex] when [tex]x \neq 0[/tex]?

A. 2
B. 18
C. [tex]\frac{2}{x^2}[/tex]
D. [tex]\frac{18}{x^2}[/tex]



Answer :

To find the product of the fractions [tex]\(\frac{x}{3}\)[/tex] and [tex]\(\frac{6}{x}\)[/tex] when [tex]\(x \neq 0\)[/tex], we proceed with the following steps:

1. Write down the given fractions:
[tex]\[ \text{First fraction: } \frac{x}{3} \][/tex]
[tex]\[ \text{Second fraction: } \frac{6}{x} \][/tex]

2. Multiply the fractions:
To find the product of two fractions, we multiply the numerators together and the denominators together.
[tex]\[ \frac{x}{3} \times \frac{6}{x} = \frac{x \cdot 6}{3 \cdot x} \][/tex]

3. Simplify the expression:
To simplify, observe that [tex]\(x\)[/tex] in the numerator and denominator can cancel each other out, as long as [tex]\(x \neq 0\)[/tex]:
[tex]\[ \frac{x \cdot 6}{3 \cdot x} = \frac{6}{3} \][/tex]

4. Further simplify the resulting fraction:
[tex]\[ \frac{6}{3} = 2 \][/tex]

Therefore, the product of the fractions [tex]\(\frac{x}{3}\)[/tex] and [tex]\(\frac{6}{x}\)[/tex] is [tex]\(2\)[/tex].

The correct answer is:
2