In order to match each quadratic equation with the appropriate solution set:
1. Equation: [tex]$2x^2 - 8x + 5 = 0$[/tex]
Solution: [tex]$\frac{4 \pm \sqrt{6}}{2}$[/tex]
2. Equation: [tex]$2x^2 - 10x - 3 = 0$[/tex]
Solution: [tex]$\frac{9 \pm \sqrt{89}}{4}$[/tex]
3. Equation: [tex]$2x^2 - 8x - 3 = 0$[/tex]
Solution: [tex]$\frac{4 \pm \sqrt{22}}{2}$[/tex]
4. Equation: [tex]$2x^2 - 9x - 1 = 0$[/tex]
Solution: [tex]$\frac{9 \pm \sqrt{33}}{4}$[/tex]
5. Equation: [tex]$2x^2 - 9x + 6 = 0$[/tex]
Solution: None of the given options provide the solution
Thus, the matching pairs are:
- [tex]\( 2x^2 - 8x + 5 = 0 \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( \frac{4 \pm \sqrt{6}}{2} \)[/tex]
- [tex]\( 2x^2 - 10x - 3 = 0 \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( \frac{9 \pm \sqrt{89}}{4} \)[/tex]
- [tex]\( 2x^2 - 8x - 3 = 0 \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( \frac{4 \pm \sqrt{22}}{2} \)[/tex]
- [tex]\( 2x^2 - 9x - 1 = 0 \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( \frac{9 \pm \sqrt{33}}{4} \)[/tex]
- [tex]\( 2x^2 - 9x + 6 = 0 \)[/tex] [tex]\( \longrightarrow \)[/tex] None of the provided solutions are for this equation