Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match each quadratic equation with its solution set.

[tex]\[
\begin{array}{ll}
\text{Equation} & \text{Solution Set} \\
2x^2 - 8x + 5 = 0 & \frac{4 \pm \sqrt{6}}{2} \\
2x^2 - 10x - 3 = 0 & \frac{9 \pm \sqrt{89}}{4} \\
2x^2 - 8x - 3 = 0 & \frac{4 \pm \sqrt{22}}{2} \\
2x^2 - 9x - 1 = 0 & \frac{9 \pm \sqrt{33}}{4} \\
2x^2 - 9x + 6 = 0 & \text{(not used)} \\
\end{array}
\][/tex]



Answer :

In order to match each quadratic equation with the appropriate solution set:

1. Equation: [tex]$2x^2 - 8x + 5 = 0$[/tex]
Solution: [tex]$\frac{4 \pm \sqrt{6}}{2}$[/tex]

2. Equation: [tex]$2x^2 - 10x - 3 = 0$[/tex]
Solution: [tex]$\frac{9 \pm \sqrt{89}}{4}$[/tex]

3. Equation: [tex]$2x^2 - 8x - 3 = 0$[/tex]
Solution: [tex]$\frac{4 \pm \sqrt{22}}{2}$[/tex]

4. Equation: [tex]$2x^2 - 9x - 1 = 0$[/tex]
Solution: [tex]$\frac{9 \pm \sqrt{33}}{4}$[/tex]

5. Equation: [tex]$2x^2 - 9x + 6 = 0$[/tex]
Solution: None of the given options provide the solution

Thus, the matching pairs are:

- [tex]\( 2x^2 - 8x + 5 = 0 \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( \frac{4 \pm \sqrt{6}}{2} \)[/tex]
- [tex]\( 2x^2 - 10x - 3 = 0 \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( \frac{9 \pm \sqrt{89}}{4} \)[/tex]
- [tex]\( 2x^2 - 8x - 3 = 0 \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( \frac{4 \pm \sqrt{22}}{2} \)[/tex]
- [tex]\( 2x^2 - 9x - 1 = 0 \)[/tex] [tex]\( \longrightarrow \)[/tex] [tex]\( \frac{9 \pm \sqrt{33}}{4} \)[/tex]
- [tex]\( 2x^2 - 9x + 6 = 0 \)[/tex] [tex]\( \longrightarrow \)[/tex] None of the provided solutions are for this equation