Answered

In the expansion of [tex][tex]$(1 + 3x)^{-2}$[/tex][/tex]:

- The coefficient of [tex][tex]$x^2$[/tex][/tex] is [tex]\square[/tex]
- The coefficient of [tex][tex]$x^3$[/tex][/tex] is [tex]\square[/tex]
- The values of [tex][tex]$x$[/tex][/tex] for which the expansion is valid are [tex]\square \ \textless \ x \ \textless \ \square[/tex]

Give your answers as whole numbers or as fractions in their lowest terms in the form [tex][tex]$p / q$[/tex][/tex].



Answer :

To solve the given problem, let's go through the expansion of [tex]\((1 + 3x)^{-2}\)[/tex] and find the required information step-by-step:

1. Find the coefficient of [tex]\(x^2\)[/tex] in the expansion of [tex]\((1 + 3x)^{-2}\)[/tex]:

The coefficient of [tex]\(x^2\)[/tex] in the expansion of [tex]\((1 + 3x)^{-2}\)[/tex] is:

[tex]\( \boxed{0} \)[/tex]

2. Find the coefficient of [tex]\(x^3\)[/tex] in the expansion of [tex]\((1 + 3x)^{-2}\)[/tex]:

The coefficient of [tex]\(x^3\)[/tex] in the expansion of [tex]\((1 + 3x)^{-2}\)[/tex] is:

[tex]\( \boxed{0} \)[/tex]

3. Determine the values of [tex]\(x\)[/tex] for which the expansion is valid:

The expansion of [tex]\((1 + 3x)^{-2}\)[/tex] is a binomial series expansion, which converges within a certain range. In this case, the expansion is valid for:

[tex]\( -\frac{1}{3} < x < \frac{1}{3} \)[/tex]

Hence, the values of [tex]\(x\)[/tex] for which the series expansion is valid are:

[tex]\( \boxed{-\frac{1}{3}} < x < \boxed{\frac{1}{3}} \)[/tex]

So, the detailed step-by-step solution leads us to:
- The coefficient of [tex]\(x^2\)[/tex] in the expansion of [tex]\((1 + 3x)^{-2}\)[/tex] is [tex]\( 0 \)[/tex].
- The coefficient of [tex]\(x^3\)[/tex] in the expansion of [tex]\((1 + 3x)^{-2}\)[/tex] is [tex]\( 0 \)[/tex].
- The values of [tex]\(x\)[/tex] for which the expansion is valid are [tex]\(-\frac{1}{3} < x < \frac{1}{3}\)[/tex].