Select the best answer for the question.

What is the product of [tex]\(\frac{7}{16}\)[/tex], [tex]\(\frac{4}{3}\)[/tex], and [tex]\(\frac{1}{2}\)[/tex]?

A. [tex]\(\frac{7}{24}\)[/tex]

B. [tex]\(\frac{7}{12}\)[/tex]

C. [tex]\(\frac{21}{32}\)[/tex]

D. [tex]\(\frac{13}{48}\)[/tex]



Answer :

To find the product of the fractions [tex]\(\frac{7}{16}\)[/tex], [tex]\(\frac{4}{3}\)[/tex], and [tex]\(\frac{1}{2}\)[/tex], we will multiply them together step-by-step.

Firstly, let's write down the fractions:
[tex]\[ \frac{7}{16}, \quad \frac{4}{3}, \quad \text{and} \quad \frac{1}{2} \][/tex]

To multiply these fractions, we multiply the numerators together and the denominators together:

[tex]\[ \frac{7 \times 4 \times 1}{16 \times 3 \times 2} \][/tex]

Calculate the numerator:
[tex]\[ 7 \times 4 \times 1 = 28 \][/tex]

Calculate the denominator:
[tex]\[ 16 \times 3 \times 2 = 96 \][/tex]

Thus the product of the fractions is:
[tex]\[ \frac{28}{96} \][/tex]

Next, we need to simplify this fraction. The greatest common divisor (GCD) of 28 and 96 is 4. Therefore, we divide both the numerator and the denominator by 4:

[tex]\[ \frac{28 \div 4}{96 \div 4} = \frac{7}{24} \][/tex]

So the simplified product of [tex]\(\frac{7}{16}\)[/tex], [tex]\(\frac{4}{3}\)[/tex], and [tex]\(\frac{1}{2}\)[/tex] is:

[tex]\[ \frac{7}{24} \][/tex]

Finally, the best answer for the question is:
[tex]\[ \boxed{\frac{7}{24}} \][/tex]