Answered

How much force is required to accelerate a [tex][tex]$12 \, \text{kg}$[/tex][/tex] shopping cart at [tex][tex]$4 \, \text{m/s}^2$[/tex][/tex]?

A. [tex][tex]$3 \, \text{N}$[/tex][/tex]
B. [tex][tex]$24 \, \text{N}$[/tex][/tex]
C. [tex][tex]$48 \, \text{N}$[/tex][/tex]
D. [tex][tex]$64 \, \text{N}$[/tex][/tex]



Answer :

To determine the force required to accelerate a 12 kg shopping cart at a rate of 4 m/s², we can use Newton's second law of motion. This law states that the force exerted on an object is equal to the mass of the object multiplied by its acceleration. Mathematically, this is represented as:

[tex]\[ F = m \times a \][/tex]

where:
- [tex]\( F \)[/tex] is the force,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( a \)[/tex] is the acceleration.

Given values:
- Mass of the shopping cart, [tex]\( m = 12 \)[/tex] kg,
- Acceleration, [tex]\( a = 4 \)[/tex] m/s².

Plug these values into the equation:

[tex]\[ F = 12 \, \text{kg} \times 4 \, \text{m/s}^2 \][/tex]

[tex]\[ F = 48 \, \text{N} \][/tex]

Therefore, the force required to accelerate a 12 kg shopping cart at 4 m/s² is 48 Newtons. The correct answer is:

C. [tex]\( 48 \, \text{N} \)[/tex]