Consider the function represented by the table.

\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline -7 & -3 \\
\hline -3 & 5 \\
\hline 2 & -4 \\
\hline 4 & -8 \\
\hline
\end{tabular}

For which [tex]$x$[/tex] is [tex]$f(x) = -3$[/tex]?

A. [tex]$-7$[/tex]
B. [tex]$-4$[/tex]
C. 4
D. 5



Answer :

To determine which value of [tex]\( x \)[/tex] makes [tex]\( f(x) = -3 \)[/tex], let's examine the values of the function [tex]\( f \)[/tex] provided in the table. The table lists the pairs of [tex]\( x \)[/tex] and [tex]\( f(x) \)[/tex] as follows:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -7 & -3 \\ \hline -3 & 5 \\ \hline 2 & -4 \\ \hline 4 & -8 \\ \hline \end{array} \][/tex]

We need to find the value of [tex]\( x \)[/tex] for which [tex]\( f(x) = -3 \)[/tex].

Let's look at each pair:

- For [tex]\( x = -7 \)[/tex], [tex]\( f(x) = -3 \)[/tex].
- For [tex]\( x = -3 \)[/tex], [tex]\( f(x) = 5 \)[/tex].
- For [tex]\( x = 2 \)[/tex], [tex]\( f(x) = -4 \)[/tex].
- For [tex]\( x = 4 \)[/tex], [tex]\( f(x) = -8 \)[/tex].

It is clear from the table that when [tex]\( x = -7 \)[/tex], [tex]\( f(x) \)[/tex] equals [tex]\( -3 \)[/tex].

Thus, the value of [tex]\( x \)[/tex] for which [tex]\( f(x) = -3 \)[/tex] is [tex]\( \boxed{-7} \)[/tex].