The table represents a function.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline
-6 & 3 \\
\hline
-2 & 1 \\
\hline
0 & 4 \\
\hline
3 & -2 \\
\hline
\end{tabular}

What is [tex]$f(-2)$[/tex]?

A. [tex]$-3$[/tex]
B. [tex]$-1$[/tex]
C. 1
D. 3



Answer :

To determine the value of [tex]\( f(-2) \)[/tex], we need to examine the given table, which provides the values of the function [tex]\( f(x) \)[/tex] for specific [tex]\( x \)[/tex]-values.

Here is the table again for reference:

[tex]\[ \begin{array}{|c|c|} \hline x & f(x) \\ \hline -6 & 3 \\ \hline -2 & 1 \\ \hline 0 & 4 \\ \hline 3 & -2 \\ \hline \end{array} \][/tex]

The task is to find the value of [tex]\( f(x) \)[/tex] when [tex]\( x = -2 \)[/tex].

1. Look at the second row of the table, where [tex]\( x = -2 \)[/tex].
2. The corresponding value of [tex]\( f(x) \)[/tex] in this row is 1.

Therefore, [tex]\( f(-2) = 1 \)[/tex].

So, the correct answer is:

[tex]\[1\][/tex]