What is the quotient?

[tex]\[ \frac{2y^2 - 6y - 20}{4y + 12} \div \frac{y^2 + 5y + 6}{3y^2 + 18y + 27} \][/tex]

A. [tex]\(\frac{2}{3(y-5)}\)[/tex]

B. [tex]\(\frac{3(y-5)}{2}\)[/tex]

C. [tex]\(\frac{(y-5)(y+2)^2}{6(y+3)^2}\)[/tex]

D. [tex]\(\frac{3(y+5)(y-2)}{2(y+2)}\)[/tex]



Answer :

Let's find the quotient of the given rational expressions step by step:

Given:
[tex]\[ \frac{2y^2 - 6y - 20}{4y + 12} \div \frac{y^2 + 5y + 6}{3y^2 + 18y + 27} \][/tex]

First, we recall that dividing by a fraction is equivalent to multiplying by its reciprocal:

[tex]\[ \frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} \][/tex]

Applying this to our expressions:

[tex]\[ \frac{2y^2 - 6y - 20}{4y + 12} \times \frac{3y^2 + 18y + 27}{y^2 + 5y + 6} \][/tex]

Next, we factor the polynomials where possible:

1. For the numerator [tex]\(2y^2 - 6y - 20\)[/tex]:
[tex]\[ 2y^2 - 6y - 20 = 2(y^2 - 3y - 10) = 2(y - 5)(y + 2) \][/tex]

2. For the denominator [tex]\(4y + 12\)[/tex]:
[tex]\[ 4y + 12 = 4(y + 3) \][/tex]

3. For the numerator [tex]\(3y^2 + 18y + 27\)[/tex]:
[tex]\[ 3y^2 + 18y + 27 = 3(y^2 + 6y + 9) = 3(y + 3)^2 \][/tex]

4. For the denominator [tex]\(y^2 + 5y + 6\)[/tex]:
[tex]\[ y^2 + 5y + 6 = (y + 2)(y + 3) \][/tex]

Substitute the factored forms back into our expression:

[tex]\[ \frac{2(y - 5)(y + 2)}{4(y + 3)} \times \frac{3(y + 3)^2}{(y + 2)(y + 3)} \][/tex]

Cancel out the common factors:

1. [tex]\((y + 2)\)[/tex] in the numerator and denominator.
2. One [tex]\((y + 3)\)[/tex] in the numerator and denominator.

This leaves us with:

[tex]\[ \frac{2(y - 5)}{4} \times \frac{3(y + 3)}{(y + 2)} \][/tex]

Simplify the multiplication:

[tex]\[ \frac{2(y - 5) \cdot 3(y + 3)}{4 \cdot (y + 3)} = \frac{2 \cdot 3(y - 5)(y + 3)}{4(y + 3)} \][/tex]

Further, we can cancel another [tex]\((y + 3)\)[/tex] term:

[tex]\[ \frac{6(y - 5)}{4} = \frac{3(y - 5)}{2} \][/tex]

Thus, the quotient is:

[tex]\[ \boxed{\frac{3(y - 5)}{2}} \][/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{\frac{3(y-5)}{2}} \][/tex]