For the line [tex][tex]$y = 1 - 3x$[/tex][/tex], create a table to show the values of [tex][tex]$x$[/tex][/tex] and [tex][tex]$y$[/tex][/tex] where [tex][tex]$x$[/tex][/tex] is from -2 to 2.

| [tex]x[/tex] | [tex]y[/tex] |
|-----------|--------------|
| -2 | |
| -1 | |
| 0 | |
| 1 | |
| 2 | |



Answer :

Sure! Let's create a table for the line [tex]\( y = 1 - 3x \)[/tex] where [tex]\( x \)[/tex] ranges from -2 to 2. We'll calculate the corresponding [tex]\( y \)[/tex] values for each [tex]\( x \)[/tex].

### Step-by-Step Solution:

1. Identify the range of [tex]\( x \)[/tex] values:
- The [tex]\( x \)[/tex] values run from -2 to 2.
- So we have [tex]\( x = -2, -1, 0, 1, 2 \)[/tex].

2. Calculate the [tex]\( y \)[/tex] values for each [tex]\( x \)[/tex] using the equation [tex]\( y = 1 - 3x \)[/tex]:
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ y = 1 - 3(-2) = 1 + 6 = 7 \][/tex]
- For [tex]\( x = -1 \)[/tex]:
[tex]\[ y = 1 - 3(-1) = 1 + 3 = 4 \][/tex]
- For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 1 - 3(0) = 1 \][/tex]
- For [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 1 - 3(1) = 1 - 3 = -2 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = 1 - 3(2) = 1 - 6 = -5 \][/tex]

3. Construct the table with the calculated values:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 7 \\ -1 & 4 \\ 0 & 1 \\ 1 & -2 \\ 2 & -5 \\ \hline \end{array} \][/tex]

### Detailed Table:

- When [tex]\( x = -2 \)[/tex], [tex]\( y = 7 \)[/tex].
- When [tex]\( x = -1 \)[/tex], [tex]\( y = 4 \)[/tex].
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 1 \)[/tex].
- When [tex]\( x = 1 \)[/tex], [tex]\( y = -2 \)[/tex].
- When [tex]\( x = 2 \)[/tex], [tex]\( y = -5 \)[/tex].

Thus, the completed table showing the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] is:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -2 & 7 \\ -1 & 4 \\ 0 & 1 \\ 1 & -2 \\ 2 & -5 \\ \hline \end{array} \][/tex]

These are the respective [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values for the given line equation [tex]\( y = 1 - 3x \)[/tex] within the specified range.