2. An astronaut takes a [tex][tex]$6.5 \, \text{kg}$[/tex][/tex] bowling ball to the moon, which has a gravitational acceleration of [tex][tex]$1.6 \, \text{m/s}^2$[/tex][/tex]. What is the weight of the ball while it is on the moon?

A. [tex][tex]$4.06 \, \text{N}$[/tex][/tex]

B. [tex][tex]$4.9 \, \text{N}$[/tex][/tex]

C. [tex][tex]$8.1 \, \text{N}$[/tex][/tex]

D. [tex][tex]$10.4 \, \text{N}$[/tex][/tex]



Answer :

To solve for the weight of the bowling ball on the moon, we will use the formula for weight, which is:

[tex]\[ \text{Weight} = \text{mass} \times \text{gravitational acceleration} \][/tex]

Here we are given:
- The mass of the bowling ball ([tex]\( m \)[/tex]) is 6.5 kg.
- The gravitational acceleration on the moon ([tex]\( g \)[/tex]) is 1.6 m/s[tex]\(^2\)[/tex].

Plugging these values into the formula, we get:

[tex]\[ \text{Weight} = 6.5 \: \text{kg} \times 1.6 \: \text{m/s}^2 \][/tex]

Carrying out the multiplication:

[tex]\[ \text{Weight} = 6.5 \times 1.6 = 10.4 \: \text{N} \][/tex]

Therefore, the weight of the ball on the moon is 10.4 N.

Thus, the correct answer is:

D. [tex]\( 10.4 \, N \)[/tex]