Copy and complete the table for the graph [tex]2x - y = 6[/tex].

\[
\begin{tabular}{c|c|c|c|c|c}
[tex]$x$[/tex] & -2 & -1 & 0 & 1 & 2 \\
\hline
[tex]$y$[/tex] & [tex]$A$[/tex] & -8 & [tex]$B$[/tex] & -4 & [tex]$C$[/tex] \\
\end{tabular}



Answer :

To complete the table for the graph given by the equation [tex]\(2x - y = 6\)[/tex], we need to find the values of [tex]\(y\)[/tex] that satisfy this equation for the given values of [tex]\(x\)[/tex].

Let's work through the calculation of [tex]\(y\)[/tex] step-by-step for each given [tex]\(x\)[/tex] value:

1. When [tex]\(x = -2\)[/tex]:
[tex]\[ 2(-2) - y = 6 \][/tex]
Simplifying this,
[tex]\[ -4 - y = 6 \][/tex]
Adding 4 to both sides,
[tex]\[ -y = 10 \][/tex]
Multiplying both sides by -1,
[tex]\[ y = -10 \][/tex]
Thus, [tex]\(A = -10\)[/tex].

2. When [tex]\(x = -1\)[/tex]:
Given that [tex]\(y = -8\)[/tex], it does not need further calculation.

3. When [tex]\(x = 0\)[/tex]:
[tex]\[ 2(0) - y = 6 \][/tex]
Simplifying this,
[tex]\[ 0 - y = 6 \][/tex]
Multiplying both sides by -1,
[tex]\[ y = -6 \][/tex]
Thus, [tex]\(B = -6\)[/tex].

4. When [tex]\(x = 1\)[/tex]:
Given that [tex]\(y = -4\)[/tex], it does not need further calculation.

5. When [tex]\(x = 2\)[/tex]:
[tex]\[ 2(2) - y = 6 \][/tex]
Simplifying this,
[tex]\[ 4 - y = 6 \][/tex]
Subtracting 4 from both sides,
[tex]\[ -y = 2 \][/tex]
Multiplying both sides by -1,
[tex]\[ y = -2 \][/tex]
Thus, [tex]\(C = -2\)[/tex].

Hence, the completed table for the graph [tex]\(2x - y = 6\)[/tex] is:
[tex]\[ \begin{tabular}{c|c|c|c|c|c} x & -2 & -1 & 0 & 1 & 2 \\ \hline y & -10 & -8 & -6 & -4 & -2 \\ \end{tabular} \][/tex]