Area of a Circle and a Sector Quiz

1. Fiona draws a circle with a diameter of 14 meters. What is the area of Fiona's circle?

A. [tex]$7 \pi \, m^2$[/tex]

B. [tex]$14 \pi \, m^2$[/tex]

C. [tex]$28 \pi \, m^2$[/tex]

D. [tex]$49 \pi \, m^2$[/tex]



Answer :

To find the area of a circle when given the diameter, we can use the formula for the area of a circle, which is [tex]\( A = \pi r^2 \)[/tex], where [tex]\( r \)[/tex] is the radius of the circle.

Here is the step-by-step process:

1. Find the Radius:
The diameter of Fiona's circle is 14 meters. The radius [tex]\( r \)[/tex] is half of the diameter.
[tex]\[ r = \frac{diameter}{2} = \frac{14 \, \text{meters}}{2} = 7 \, \text{meters} \][/tex]

2. Calculate the Area:
Using the formula for the area of a circle [tex]\( A = \pi r^2 \)[/tex], we substitute [tex]\( r \)[/tex] with 7 meters.
[tex]\[ A = \pi \times (7 \, \text{meters})^2 \][/tex]
[tex]\[ A = \pi \times 49 \, \text{square meters} \][/tex]
[tex]\[ A = 49 \pi \, \text{square meters} \][/tex]

Therefore, after following these steps, we find that the area of Fiona's circle is [tex]\( 49 \pi \)[/tex] square meters.

The correct answer is:
[tex]\[ \boxed{49 \pi \, m^2} \][/tex]