Answer :
Absolutely! Let's carefully analyze how we can transform Equation [tex]\(A\)[/tex] into Equation [tex]\(B\)[/tex].
Given equations:
- Equation [tex]\(A\)[/tex]: [tex]\(3x - 1 = 7\)[/tex]
- Equation [tex]\(B\)[/tex]: [tex]\(3x = 8\)[/tex]
Steps to transform Equation [tex]\(A\)[/tex] to Equation [tex]\(B\)[/tex]:
1. Starting with Equation [tex]\(A\)[/tex]:
[tex]\[ 3x - 1 = 7 \][/tex]
2. Isolate the term involving [tex]\(x\)[/tex]:
- To eliminate the [tex]\(-1\)[/tex] on the left side, we need to add [tex]\(1\)[/tex] to both sides of the equation.
- Adding [tex]\(1\)[/tex] to both sides:
[tex]\[ 3x - 1 + 1 = 7 + 1 \][/tex]
- Simplify both sides:
[tex]\[ 3x = 8 \][/tex]
3. Resulting Equation:
[tex]\[ 3x = 8 \][/tex]
- As you can see, this matches Equation [tex]\(B\)[/tex].
Conclusion:
- The transformation involves adding [tex]\(1\)[/tex] to both sides of Equation [tex]\(A\)[/tex] to achieve Equation [tex]\(B\)[/tex].
Correct Answer:
[tex]\[ \text{(C) Add/subtract the same quantity to/from both sides} \][/tex]
Given equations:
- Equation [tex]\(A\)[/tex]: [tex]\(3x - 1 = 7\)[/tex]
- Equation [tex]\(B\)[/tex]: [tex]\(3x = 8\)[/tex]
Steps to transform Equation [tex]\(A\)[/tex] to Equation [tex]\(B\)[/tex]:
1. Starting with Equation [tex]\(A\)[/tex]:
[tex]\[ 3x - 1 = 7 \][/tex]
2. Isolate the term involving [tex]\(x\)[/tex]:
- To eliminate the [tex]\(-1\)[/tex] on the left side, we need to add [tex]\(1\)[/tex] to both sides of the equation.
- Adding [tex]\(1\)[/tex] to both sides:
[tex]\[ 3x - 1 + 1 = 7 + 1 \][/tex]
- Simplify both sides:
[tex]\[ 3x = 8 \][/tex]
3. Resulting Equation:
[tex]\[ 3x = 8 \][/tex]
- As you can see, this matches Equation [tex]\(B\)[/tex].
Conclusion:
- The transformation involves adding [tex]\(1\)[/tex] to both sides of Equation [tex]\(A\)[/tex] to achieve Equation [tex]\(B\)[/tex].
Correct Answer:
[tex]\[ \text{(C) Add/subtract the same quantity to/from both sides} \][/tex]