Answer two questions about Equations [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:

[tex]\[ A. \quad 3x - 1 = 7 \][/tex]
[tex]\[ B. \quad 3x = 8 \][/tex]

1. How can we get Equation [tex]\( B \)[/tex] from Equation [tex]\( A \)[/tex]?

Choose 1 answer:
A. Multiply/divide both sides by the same non-zero constant
B. Multiply/divide both sides by the same variable expression
C. Add/subtract the same quantity to/from both sides
D. Add/subtract a quantity to/from only one side



Answer :

Absolutely! Let's carefully analyze how we can transform Equation [tex]\(A\)[/tex] into Equation [tex]\(B\)[/tex].

Given equations:
- Equation [tex]\(A\)[/tex]: [tex]\(3x - 1 = 7\)[/tex]
- Equation [tex]\(B\)[/tex]: [tex]\(3x = 8\)[/tex]

Steps to transform Equation [tex]\(A\)[/tex] to Equation [tex]\(B\)[/tex]:

1. Starting with Equation [tex]\(A\)[/tex]:
[tex]\[ 3x - 1 = 7 \][/tex]

2. Isolate the term involving [tex]\(x\)[/tex]:
- To eliminate the [tex]\(-1\)[/tex] on the left side, we need to add [tex]\(1\)[/tex] to both sides of the equation.
- Adding [tex]\(1\)[/tex] to both sides:
[tex]\[ 3x - 1 + 1 = 7 + 1 \][/tex]
- Simplify both sides:
[tex]\[ 3x = 8 \][/tex]

3. Resulting Equation:
[tex]\[ 3x = 8 \][/tex]
- As you can see, this matches Equation [tex]\(B\)[/tex].

Conclusion:
- The transformation involves adding [tex]\(1\)[/tex] to both sides of Equation [tex]\(A\)[/tex] to achieve Equation [tex]\(B\)[/tex].

Correct Answer:
[tex]\[ \text{(C) Add/subtract the same quantity to/from both sides} \][/tex]