Answer :
Given the sets [tex]\( A = \{2, 3, 6, 7\} \)[/tex] and [tex]\( B = \{1, 2, 3, 6, 7, 8\} \)[/tex], we need to determine the intersection and union of these sets.
### Intersection ([tex]\(A \cap B\)[/tex]):
The intersection of two sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is the set of elements that are common to both [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
- Elements in [tex]\( A \)[/tex]: [tex]\( \{2, 3, 6, 7\} \)[/tex]
- Elements in [tex]\( B \)[/tex]: [tex]\( \{1, 2, 3, 6, 7, 8\} \)[/tex]
The common elements are [tex]\( 2, 3, 6, \)[/tex] and [tex]\( 7 \)[/tex].
Thus, the intersection [tex]\(A \cap B = \{2, 3, 6, 7\}\)[/tex].
### Union ([tex]\(A \cup B\)[/tex]):
The union of two sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is the set of elements that are in [tex]\( A \)[/tex], in [tex]\( B \)[/tex], or in both.
- Elements in [tex]\( A \)[/tex]: [tex]\( \{2, 3, 6, 7\} \)[/tex]
- Elements in [tex]\( B \)[/tex]: [tex]\( \{1, 2, 3, 6, 7, 8\} \)[/tex]
Combining the elements from both sets (and removing duplicates) gives us: [tex]\( 1, 2, 3, 6, 7, \)[/tex] and [tex]\( 8 \)[/tex].
Thus, the union [tex]\(A \cup B = \{1, 2, 3, 6, 7, 8\}\)[/tex].
### Answer:
[tex]\[ \begin{array}{l} A = \{2, 3, 6, 7\} \\ B = \{1, 2, 3, 6, 7, 8\} \\ A \cap B = \{2, 3, 6, 7\} \\ A \cup B = \{1, 2, 3, 6, 7, 8\} \end{array} \][/tex]
### Intersection ([tex]\(A \cap B\)[/tex]):
The intersection of two sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is the set of elements that are common to both [tex]\( A \)[/tex] and [tex]\( B \)[/tex].
- Elements in [tex]\( A \)[/tex]: [tex]\( \{2, 3, 6, 7\} \)[/tex]
- Elements in [tex]\( B \)[/tex]: [tex]\( \{1, 2, 3, 6, 7, 8\} \)[/tex]
The common elements are [tex]\( 2, 3, 6, \)[/tex] and [tex]\( 7 \)[/tex].
Thus, the intersection [tex]\(A \cap B = \{2, 3, 6, 7\}\)[/tex].
### Union ([tex]\(A \cup B\)[/tex]):
The union of two sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex] is the set of elements that are in [tex]\( A \)[/tex], in [tex]\( B \)[/tex], or in both.
- Elements in [tex]\( A \)[/tex]: [tex]\( \{2, 3, 6, 7\} \)[/tex]
- Elements in [tex]\( B \)[/tex]: [tex]\( \{1, 2, 3, 6, 7, 8\} \)[/tex]
Combining the elements from both sets (and removing duplicates) gives us: [tex]\( 1, 2, 3, 6, 7, \)[/tex] and [tex]\( 8 \)[/tex].
Thus, the union [tex]\(A \cup B = \{1, 2, 3, 6, 7, 8\}\)[/tex].
### Answer:
[tex]\[ \begin{array}{l} A = \{2, 3, 6, 7\} \\ B = \{1, 2, 3, 6, 7, 8\} \\ A \cap B = \{2, 3, 6, 7\} \\ A \cup B = \{1, 2, 3, 6, 7, 8\} \end{array} \][/tex]