Simplify the following expression:
[tex]\[ \sqrt{\frac{(9x)(8)}{72}} \ \textgreater \ 5[(32+5)-(30+2)] \][/tex]



Answer :

Alright, let's solve the given inequality step-by-step.

We start with the inequality:

[tex]\[ \sqrt{\frac{(9 x)(8)}{72}} > 5 \left[(32 + 5) - (30 + 2)\right] \][/tex]

Step 1: Simplifying inside the square root

First, simplify the expression inside the square root on the left side:

[tex]\[ \frac{(9 x)(8)}{72} \][/tex]

Notice that [tex]\(72\)[/tex] can be factored as [tex]\(72 = 9 \times 8\)[/tex]. Therefore,

[tex]\[ \frac{(9 x)(8)}{72} = \frac{(9 x)(8)}{9 \times 8} = \frac{9 \times 8 \times x}{9 \times 8} = x \][/tex]

So the expression inside the square root simplifies to [tex]\(x\)[/tex]. Therefore, the left side becomes:

[tex]\[ \sqrt{x} \][/tex]

Step 2: Simplifying the right side

Now, simplify the expression on the right side:

[tex]\[ 5 \left[(32 + 5) - (30 + 2)\right] \][/tex]

First, perform the operations inside the parentheses:

[tex]\[ 32 + 5 = 37 \quad \text{and} \quad 30 + 2 = 32 \][/tex]

Now, subtract the results:

[tex]\[ 37 - 32 = 5 \][/tex]

So the right side simplifies to:

[tex]\[ 5 \times 5 = 25 \][/tex]

Step 3: Forming the simplified inequality

With the simplified expressions, rewrite the inequality:

[tex]\[ \sqrt{x} > 25 \][/tex]

Step 4: Solving the inequality

To solve for [tex]\(x\)[/tex], we need to eliminate the square root by squaring both sides of the inequality:

[tex]\[ (\sqrt{x})^2 > 25^2 \][/tex]

This simplifies to:

[tex]\[ x > 625 \][/tex]

So, the solution to the inequality is:

[tex]\[ x > 625 \][/tex]

This is the final answer.