Select the correct answer.

Use the properties of exponents to rewrite this expression:

[tex]\[
\frac{(2a^4)^2}{a^0 a^5}
\][/tex]

What is the value of the rewritten expression when [tex]\(a = -5\)[/tex]?

A. -500
B. -20
C. -250
D. -60



Answer :

Let's solve the given expression step-by-step using the properties of exponents.

We start with the expression:
[tex]\[ \frac{\left(2 a^4\right)^2}{a^0 a^5} \][/tex]

### Step 1: Simplify the Numerator
First, simplify the numerator [tex]\(\left(2 a^4\right)^2\)[/tex]:

[tex]\[ \left(2 a^4\right)^2 = 2^2 \cdot \left(a^4\right)^2 \][/tex]

Using the properties of exponents, we know that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]:

[tex]\[ 2^2 = 4 \][/tex]
[tex]\[ \left(a^4\right)^2 = a^{4 \cdot 2} = a^8 \][/tex]

So, the numerator simplifies to:

[tex]\[ 4 a^8 \][/tex]

### Step 2: Simplify the Denominator
Now, simplify the denominator [tex]\(a^0 a^5\)[/tex]:

Using the property that any number to the power of zero is 1:

[tex]\[ a^0 = 1 \][/tex]

So, the denominator simplifies to:

[tex]\[ 1 \cdot a^5 = a^5 \][/tex]

### Step 3: Combine the Simplified Numerator and Denominator
We now have:

[tex]\[ \frac{4 a^8}{a^5} \][/tex]

Using the properties of exponents (namely [tex]\(a^m / a^n = a^{m-n}\)[/tex]):

[tex]\[ \frac{4 a^8}{a^5} = 4 a^{8-5} = 4 a^3 \][/tex]

### Step 4: Substitute [tex]\(a = -5\)[/tex] into the Expression
Now, we substitute [tex]\(a = -5\)[/tex] into the simplified expression [tex]\(4 a^3\)[/tex]:

[tex]\[ 4 \left(-5\right)^3 \][/tex]

Calculate [tex]\((-5)^3\)[/tex]:

[tex]\[ (-5)^3 = -125 \][/tex]

Multiply by 4:

[tex]\[ 4 \cdot (-125) = -500 \][/tex]

Therefore, the value of the expression when [tex]\(a = -5\)[/tex] is:

[tex]\[ -500 \][/tex]

### Conclusion
The correct answer is:
A. -500