What is the inverse of the function [tex][tex]$f(x)=2x+1$[/tex][/tex]?

A. [tex]h(x)=\frac{1}{2}x-\frac{1}{2}[/tex]

B. [tex]h(x)=\frac{1}{2}x+\frac{1}{2}[/tex]

C. [tex]h(x)=\frac{1}{2}x-2[/tex]

D. [tex]h(x)=\frac{1}{2}x+2[/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = 2x + 1 \)[/tex], we need to follow a series of steps.

1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex]:
The original function is [tex]\( y = 2x + 1 \)[/tex].

2. Interchange [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
To find the inverse, swap the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]. So we write [tex]\( x = 2y + 1 \)[/tex].

3. Solve for [tex]\( y \)[/tex]:
To make [tex]\( y \)[/tex] the subject of the equation:
- Subtract 1 from both sides: [tex]\( x - 1 = 2y \)[/tex]
- Divide both sides by 2: [tex]\( y = \frac{x - 1}{2} \)[/tex]

4. Rewrite the inverse function:
Substitute [tex]\( y \)[/tex] with [tex]\( f^{-1}(x) \)[/tex], giving us the inverse function [tex]\( f^{-1}(x) = \frac{x - 1}{2} \)[/tex].

Simplifying the right-hand side, we get:

[tex]\[ f^{-1}(x) = \frac{1}{2} x - \frac{1}{2} \][/tex]

Now, let's compare this result with the given options:
1. [tex]\( h(x) = \frac{1}{2} x - \frac{1}{2} \)[/tex]
2. [tex]\( h(x) = \frac{1}{2} x + \frac{1}{2} \)[/tex]
3. [tex]\( h(x) = \frac{1}{2} x - 2 \)[/tex]
4. [tex]\( h(x) = \frac{1}{2} x + 2 \)[/tex]

The correct option that represents the inverse function [tex]\( f^{-1}(x) \)[/tex] is:

[tex]\[ h(x) = \frac{1}{2} x - \frac{1}{2} \][/tex]

Therefore, the inverse of the function [tex]\( f(x) = 2x + 1 \)[/tex] is [tex]\( h(x) = \frac{1}{2} x - \frac{1}{2} \)[/tex], which corresponds to the first option.

Other Questions