Which represents the inverse of the function [tex][tex]$f(x) = 4x$[/tex][/tex]?

A. [tex][tex]$h(x) = x + 4$[/tex][/tex]
B. [tex][tex]$h(x) = x - 4$[/tex][/tex]
C. [tex][tex]$h(x) = \frac{3}{4}x$[/tex][/tex]
D. [tex][tex]$h(x) = \frac{1}{4}x$[/tex][/tex]



Answer :

To find the inverse of the function [tex]\( f(x) = 4x \)[/tex], we need to follow a sequence of steps. Here is a detailed, step-by-step solution:

### Step 1: Rewrite the function in terms of [tex]\( y \)[/tex].
Start with the function given:
[tex]\[ f(x) = 4x \][/tex]

Rewrite it as:
[tex]\[ y = 4x \][/tex]

### Step 2: Swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
To find the inverse, we swap [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the equation:
[tex]\[ x = 4y \][/tex]

### Step 3: Solve for [tex]\( y \)[/tex].
Solve the equation [tex]\( x = 4y \)[/tex] for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{x}{4} \][/tex]

### Step 4: Rewrite the inverse function.
Replace [tex]\( y \)[/tex] with [tex]\( h(x) \)[/tex] to express the inverse function:
[tex]\[ h(x) = \frac{x}{4} \][/tex]

Alternatively, it can be written as:
[tex]\[ h(x) = \frac{1}{4} x \][/tex]

### Conclusion:
The function representing the inverse of [tex]\( f(x) = 4x \)[/tex] is:

[tex]\[ h(x) = \frac{1}{4} x \][/tex]

So, the correct choice is:

[tex]\[ h(x) = \frac{1}{4} x \][/tex]

Thus, the correct answer is:
[tex]\[ \boxed{4} \][/tex]