Let the function [tex]f[/tex] be given by the equation [tex]f(x) = 3x - 2[/tex]. Evaluate [tex]f^{-1}(1)[/tex] without finding an equation for the function [tex]f^{-1}(x)[/tex].



Answer :

To evaluate [tex]\( f^{-1}(1) \)[/tex] for the function [tex]\( f(x) = 3x - 2 \)[/tex], we aim to find the value of [tex]\( x \)[/tex] such that [tex]\( f(x) = 1 \)[/tex]. Follow these steps:

1. Set up the equation: Start by setting the function equal to 1.
[tex]\[ f(x) = 1 \][/tex]
Given [tex]\( f(x) = 3x - 2 \)[/tex], we substitute [tex]\( f(x) \)[/tex] with [tex]\( 3x - 2 \)[/tex]:
[tex]\[ 3x - 2 = 1 \][/tex]

2. Solve for [tex]\( x \)[/tex]:
To isolate [tex]\( x \)[/tex], first add 2 to both sides of the equation:
[tex]\[ 3x - 2 + 2 = 1 + 2 \][/tex]
This simplifies to:
[tex]\[ 3x = 3 \][/tex]

3. Divide by 3: To find [tex]\( x \)[/tex], divide both sides of the equation by 3:
[tex]\[ x = \frac{3}{3} \][/tex]
Simplifying the fraction, we find:
[tex]\[ x = 1 \][/tex]

4. Conclusion: The value of [tex]\( x \)[/tex] that satisfies [tex]\( f(x) = 1 \)[/tex] is [tex]\( x = 1 \)[/tex].

Therefore, [tex]\( f^{-1}(1) = 1 \)[/tex].