Select the correct answer.

A triangle has side lengths of [tex]n, n-3[/tex], and [tex]2(n-2)[/tex]. If the perimeter of the triangle is at least 37 units, what is the value of [tex]n[/tex]?

A. [tex]n \geq 7.5[/tex]
B. [tex]n \geq 10.5[/tex]
C. [tex]n \geq 8[/tex]
D. [tex]n \geq 11[/tex]



Answer :

Let's solve the problem step-by-step.

Given the sides of the triangle:
- First side: [tex]\( n \)[/tex]
- Second side: [tex]\( n - 3 \)[/tex]
- Third side: [tex]\( 2(n - 2) \)[/tex]

First, let's simplify the expression for the third side:
[tex]\[ 2(n - 2) = 2n - 4 \][/tex]

The perimeter of the triangle is the sum of all three sides:
[tex]\[ \text{Perimeter} = n + (n - 3) + (2n - 4) \][/tex]

Now combine the terms:
[tex]\[ \text{Perimeter} = n + n - 3 + 2n - 4 \][/tex]
[tex]\[ \text{Perimeter} = 4n - 7 \][/tex]

We are given that the perimeter should be at least 37 units:
[tex]\[ 4n - 7 \geq 37 \][/tex]

To solve for [tex]\( n \)[/tex], first add 7 to both sides to isolate the term with [tex]\( n \)[/tex]:
[tex]\[ 4n - 7 + 7 \geq 37 + 7 \][/tex]
[tex]\[ 4n \geq 44 \][/tex]

Next, divide both sides by 4:
[tex]\[ n \geq \frac{44}{4} \][/tex]
[tex]\[ n \geq 11 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{n \geq 11} \][/tex]
So the correct option is D.