Use the change-of-base theorem to find the logarithm.

[tex]\[
\log _3 5
\][/tex]

[tex]\[
\log _3 5 = \square
\][/tex]

(Simplify your answer. Do not round until the final answer. Then round to four decimal places as needed.)



Answer :

To find [tex]\( \log_{3} 5 \)[/tex] using the change-of-base theorem, we can follow these steps:

1. Understand the Change-of-Base Theorem:

The change-of-base theorem states that for any positive numbers [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] (where [tex]\( b \neq 1 \)[/tex] and [tex]\( c \neq 1 \)[/tex]):
[tex]\[ \log_{b} a = \frac{\log_{c}(a)}{\log_{c}(b)} \][/tex]

Here, [tex]\( b = 3 \)[/tex] and [tex]\( a = 5 \)[/tex]. We can choose any base [tex]\( c \)[/tex] for our logarithms. A common and convenient choice is the natural logarithm (base [tex]\( e \)[/tex]). So we will use natural logarithms ([tex]\( \ln \)[/tex]).

2. Set Up the Calculation:

Using natural logarithms, the change-of-base theorem gives:
[tex]\[ \log_{3} 5 = \frac{\ln(5)}{\ln(3)} \][/tex]

3. Calculate the Natural Logarithms:

Suppose we have calculated [tex]\( \ln(5) = 1.6094379124341003 \)[/tex] and [tex]\( \ln(3) = 1.0986122886681098 \)[/tex].

4. Divide the Natural Logarithms:

Now, we divide [tex]\( \ln(5) \)[/tex] by [tex]\( \ln(3) \)[/tex]:
[tex]\[ \log_{3} 5 = \frac{1.6094379124341003}{1.0986122886681098} = 1.4649735207179269 \][/tex]

5. Round the Final Answer:

Finally, we round our answer to four decimal places:
[tex]\[ 1.4649735207179269 \approx 1.465 \][/tex]

Hence,
[tex]\[ \log_{3} 5 \approx 1.465 \][/tex]

Therefore, [tex]\( \boxed{1.465} \)[/tex] is the logarithm of 5 with base 3, rounded to four decimal places.