Use the change-of-base theorem to find the logarithm.

[tex]\[ \log_{8} 0.87 \][/tex]

[tex]\[ \log_{8} 0.87 = \square \][/tex]

(Simplify your answer. Do not round until the final answer. Then round to four decimal places as needed.)



Answer :

To find [tex]\(\log _8 0.87\)[/tex] using the change-of-base theorem, follow these steps:

1. Understand the Change-of-Base Formula:
The change-of-base formula for logarithms states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(b \neq 1\)[/tex] and [tex]\(c \neq 1\)[/tex]):
[tex]\[ \log_b(a) = \frac{\log_c(a)}{\log_c(b)} \][/tex]
This formula allows us to change the base of the logarithm to something more convenient, typically base 10 (common logarithms) or base [tex]\(e\)[/tex] (natural logarithms).

2. Apply the Change-of-Base Formula:
We need to find [tex]\(\log_8(0.87)\)[/tex]. Using base 10 for convenience, we apply the change-of-base formula:
[tex]\[ \log_8(0.87) = \frac{\log_{10}(0.87)}{\log_{10}(8)} \][/tex]

3. Calculate [tex]\(\log_{10}(0.87)\)[/tex] and [tex]\(\log_{10}(8)\)[/tex]:
- [tex]\(\log_{10}(0.87) \approx -0.06069784035361199\)[/tex]
- [tex]\(\log_{10}(8) \approx 0.9030899869919435\)[/tex]

4. Divide the Logarithms:
[tex]\[ \log_8(0.87) = \frac{-0.06069784035361199}{0.9030899869919435} \approx -0.067 \][/tex]

5. Simplify and Round the Answer:
The exact value of [tex]\(\log_8(0.87)\)[/tex] is approximately [tex]\(-0.06697089797533214\)[/tex]. When rounding to four decimal places, the result is:
[tex]\[ \log_8(0.87) \approx -0.0670 \][/tex]

Thus, the simplified and rounded value of [tex]\(\log_8(0.87)\)[/tex] is:
[tex]\[ \log_8(0.87) = -0.0670 \][/tex]