What is the formula for the volume of a right cone with base area [tex]\(B\)[/tex] and height [tex]\(h\)[/tex]?

A. [tex]\(V = \frac{1}{3} B h\)[/tex]
B. [tex]\(V = B h^2\)[/tex]
C. [tex]\(V = 3 B h\)[/tex]
D. [tex]\(V = -\frac{1}{3} B h\)[/tex]



Answer :

To determine the formula for the volume of a right cone with base area [tex]\( B \)[/tex] and height [tex]\( h \)[/tex], let's carefully analyze each option provided.

A. [tex]\( V = \frac{1}{3} B h \)[/tex]
B. [tex]\( V = B h^2 \)[/tex]
C. [tex]\( V = 3 B h \)[/tex]
D. [tex]\( V = -\frac{1}{3} B h \)[/tex]

The standard formula for the volume of a right cone is derived from the fact that the volume of a cone is one-third the volume of a cylinder with the same base area and height. A cylinder with base area [tex]\( B \)[/tex] and height [tex]\( h \)[/tex] has a volume of [tex]\( B \times h \)[/tex]. Therefore, the volume [tex]\( V \)[/tex] of a right cone is given by:

[tex]\[ V = \frac{1}{3} B h \][/tex]

Among the four given options, Option A:
[tex]\[ V = \frac{1}{3} B h \][/tex]

is the correct formula for the volume of a right cone with base area [tex]\( B \)[/tex] and height [tex]\( h \)[/tex]. Thus, the formula for the volume of a right cone with base area [tex]\( B \)[/tex] and height [tex]\( h \)[/tex] is:
[tex]\[ V = \frac{1}{3} B h \][/tex]

Hence, the correct answer is:
A. [tex]\( V = \frac{1}{3} B h \)[/tex]