Math II IC S1 23-24

Evaluating a Step Function

Evaluate the step function for the given input values.

[tex]\[ g(x)=\left\{\begin{array}{ll}
-4, & -3 \leq x\ \textless \ -1 \\
-1, & -1 \leq x\ \textless \ 2 \\
3, & 2 \leq x\ \textless \ 4 \\
5, & x \geq 4
\end{array}\right. \][/tex]

1. [tex]\( g(2)= \ \square \)[/tex]

2. [tex]\( g(-2)= \ \square \)[/tex]

3. [tex]\( g(5)= \ \square \)[/tex]



Answer :

Sure, let's carefully evaluate the step function [tex]\( g(x) \)[/tex] for the given inputs.

The step function [tex]\( g(x) \)[/tex] is defined as follows:

[tex]\[ g(x) = \left\{ \begin{array}{ll} -4, & \text{if } -3 \leq x < -1 \\ -1, & \text{if } -1 \leq x < 2 \\ 3, & \text{if } 2 \leq x < 4 \\ 5, & \text{if } x \geq 4 \end{array} \right. \][/tex]

### Evaluating [tex]\( g(2) \)[/tex]:

We need to determine which interval [tex]\( 2 \)[/tex] falls into:
- Check [tex]\(-3 \leq 2 < -1\)[/tex]: This condition is false.
- Check [tex]\(-1 \leq 2 < 2\)[/tex]: This condition is false.
- Check [tex]\(2 \leq 2 < 4\)[/tex]: This condition is true.

Thus, [tex]\( g(2) \)[/tex] evaluates to 3.

[tex]\[ g(2) = 3 \][/tex]

### Evaluating [tex]\( g(-2) \)[/tex]:

We need to determine which interval [tex]\( -2 \)[/tex] falls into:
- Check [tex]\(-3 \leq -2 < -1\)[/tex]: This condition is true.

Thus, [tex]\( g(-2) \)[/tex] evaluates to -4.

[tex]\[ g(-2) = -4 \][/tex]

### Evaluating [tex]\( g(5) \)[/tex]:

We need to determine which interval [tex]\( 5 \)[/tex] falls into:
- Check [tex]\(-3 \leq 5 < -1\)[/tex]: This condition is false.
- Check [tex]\(-1 \leq 5 < 2\)[/tex]: This condition is false.
- Check [tex]\(2 \leq 5 < 4\)[/tex]: This condition is false.
- Check [tex]\(5 \geq 4\)[/tex]: This condition is true.

Thus, [tex]\( g(5) \)[/tex] evaluates to 5.

[tex]\[ g(5) = 5 \][/tex]

In summary:

[tex]\[ g(2) = 3 \][/tex]
[tex]\[ g(-2) = -4 \][/tex]
[tex]\[ g(5) = 5 \][/tex]