To determine how much farther Adam can see than Pam, we need to express the distance in the form [tex]\(a \sqrt{b}\)[/tex] feet. According to the provided solution, we have:
1. First, we identify that the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] related to this problem are:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 4\)[/tex]
2. We can now express the additional distance Adam can see using the formula [tex]\(a \sqrt{b}\)[/tex]. Substituting the values identified:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 4\)[/tex]
3. Plugging these values into the formula:
[tex]\[
a \sqrt{b} = 2 \sqrt{4}
\][/tex]
4. We know that [tex]\(\sqrt{4} = 2\)[/tex], so:
[tex]\[
2 \sqrt{4} = 2 \times 2 = 4
\][/tex]
Therefore, in simplest terms, Adam can see [tex]\(2 \sqrt{4}\)[/tex] feet farther than Pam.
In conclusion:
- [tex]\(a = 2\)[/tex]
- [tex]\(b = 4\)[/tex]