To solve this problem, we need to determine the price per quart for each container size and then find the ratio of the prices per quart.
### Step-by-Step Solution:
1. Calculate the price per quart for the 2-quart container:
The cost of a 2-quart container is [tex]$3.00.
The volume of the 2-quart container is 2 quarts.
\[
\text{Price per quart for the 2-quart container} = \frac{\$[/tex]3.00}{2 \, \text{quarts}} = \[tex]$1.50 \, \text{per quart}
\]
2. Calculate the price per quart for the 1.5-quart container:
The cost of a 1.5-quart container is $[/tex]2.50.
The volume of the 1.5-quart container is 1.5 quarts.
[tex]\[
\text{Price per quart for the 1.5-quart container} = \frac{\$2.50}{1.5 \, \text{quarts}} \approx \$1.67 \, \text{per quart}
\][/tex]
3. Calculate the ratio of the price per quart of the 2-quart container to the price per quart of the 1.5-quart container:
[tex]\[
\text{Ratio} = \frac{\$1.50 \, \text{per quart}}{\$1.67 \, \text{per quart}} \approx 0.90
\][/tex]
4. Express the ratio in fractional form:
[tex]\[
0.90 = \frac{9}{10}
\][/tex]
Therefore, the ratio of the price per quart for the 2-quart container to the price per quart for the 1.5-quart container is:
[tex]\[
\boxed{\frac{9}{10}}
\][/tex]
So, the correct answer is Option A: [tex]\(\frac{9}{10}\)[/tex].