5. A company sells ice cream in 2-quart containers for [tex]\[tex]$3.00[/tex] per container. The company also sells ice cream in 1.5-quart containers for [tex]\$[/tex]2.50[/tex] per container. What is the ratio of the price per quart for the 2-quart container to the price per quart for the 1.5-quart container?

A. [tex]\frac{9}{10}[/tex]
B. [tex]\frac{10}{9}[/tex]
C. [tex]\frac{3}{2}[/tex]
D. [tex]\frac{5}{3}[/tex]
E. [tex]\frac{5}{2}[/tex]



Answer :

To solve this problem, we need to determine the price per quart for each container size and then find the ratio of the prices per quart.

### Step-by-Step Solution:

1. Calculate the price per quart for the 2-quart container:

The cost of a 2-quart container is [tex]$3.00. The volume of the 2-quart container is 2 quarts. \[ \text{Price per quart for the 2-quart container} = \frac{\$[/tex]3.00}{2 \, \text{quarts}} = \[tex]$1.50 \, \text{per quart} \] 2. Calculate the price per quart for the 1.5-quart container: The cost of a 1.5-quart container is $[/tex]2.50.
The volume of the 1.5-quart container is 1.5 quarts.

[tex]\[ \text{Price per quart for the 1.5-quart container} = \frac{\$2.50}{1.5 \, \text{quarts}} \approx \$1.67 \, \text{per quart} \][/tex]

3. Calculate the ratio of the price per quart of the 2-quart container to the price per quart of the 1.5-quart container:

[tex]\[ \text{Ratio} = \frac{\$1.50 \, \text{per quart}}{\$1.67 \, \text{per quart}} \approx 0.90 \][/tex]

4. Express the ratio in fractional form:

[tex]\[ 0.90 = \frac{9}{10} \][/tex]

Therefore, the ratio of the price per quart for the 2-quart container to the price per quart for the 1.5-quart container is:

[tex]\[ \boxed{\frac{9}{10}} \][/tex]

So, the correct answer is Option A: [tex]\(\frac{9}{10}\)[/tex].