Choose the correct simplification of the expression [tex]\left(4 a^4 b\right)^2[/tex].

A. [tex]16 a^8 b[/tex]
B. [tex]16 a^8 b^2[/tex]
C. [tex]16 a^6 b^2[/tex]
D. [tex]8 a^8 b^2[/tex]



Answer :

To simplify the expression [tex]\(\left(4 a^4 b\right)^2\)[/tex], follow these steps:

1. Identify the expression and the exponent: We are given [tex]\(\left(4 a^4 b\right)^2\)[/tex].

2. Distribute the external exponent to each term inside the parentheses: The expression inside the parentheses consists of three factors: [tex]\(4\)[/tex], [tex]\(a^4\)[/tex], and [tex]\(b\)[/tex]. When we raise the entire expression to the power of 2, we need to raise each factor inside the parentheses to the power of 2.
[tex]\[ \left(4 a^4 b\right)^2 = 4^2 \cdot (a^4)^2 \cdot b^2 \][/tex]

3. Simplify each part separately:
- For [tex]\(4^2\)[/tex]:
[tex]\[ 4^2 = 16 \][/tex]
- For [tex]\((a^4)^2\)[/tex], use the property of exponents that [tex]\((x^m)^n = x^{m \cdot n}\)[/tex]:
[tex]\[ (a^4)^2 = a^{4 \cdot 2} = a^8 \][/tex]
- For [tex]\(b^2\)[/tex]:
[tex]\[ b^2 = b^2 \][/tex]

4. Combine the results:
[tex]\[ 4^2 \cdot (a^4)^2 \cdot b^2 = 16 \cdot a^8 \cdot b^2 = 16 a^8 b^2 \][/tex]

Therefore, the correct simplification of the expression [tex]\(\left(4 a^4 b\right)^2\)[/tex] is:
[tex]\[ \boxed{16 a^8 b^2} \][/tex]