Choose the correct simplification of the expression [tex]\left(6 x^2 y\right)^2\left(y^2\right)^3[/tex].

A. [tex]12 x^4 y^8[/tex]

B. [tex]36 x^4 y^5[/tex]

C. [tex]36 x^4 y^8[/tex]

D. [tex]12 x^2 y^7[/tex]



Answer :

To simplify the expression [tex]\(\left(6 x^2 y\right)^2 \left(y^2\right)^3\)[/tex], we will begin by working step-by-step with each part of the expression.

### Step 1: Simplify [tex]\(\left(6 x^2 y\right)^2\)[/tex]

First, let's break down this part:
[tex]\[ \left(6 x^2 y\right)^2 \][/tex]
When we square a product inside the parentheses, each factor inside is raised to the power of 2:
[tex]\[ = 6^2 \cdot \left(x^2\right)^2 \cdot y^2 \][/tex]
Calculate each component:
[tex]\[ 6^2 = 36 \][/tex]
[tex]\[ \left(x^2\right)^2 = x^{2 \times 2} = x^4 \][/tex]
[tex]\[ y^2 = y^2 \][/tex]
Thus,
[tex]\[ \left(6 x^2 y\right)^2 = 36 x^4 y^2 \][/tex]

### Step 2: Simplify [tex]\(\left(y^2\right)^3\)[/tex]

Next, we simplify this part:
[tex]\[ \left(y^2\right)^3 \][/tex]
Raise [tex]\(y^2\)[/tex] to the power of 3:
[tex]\[ = y^{2 \times 3} = y^6 \][/tex]

### Step 3: Combine the simplified parts

Now, we combine the results from steps 1 and 2:
[tex]\[ (36 x^4 y^2) \cdot (y^6) \][/tex]
When multiplying terms with the same base, add the exponents:
[tex]\[ = 36 x^4 y^{2 + 6} = 36 x^4 y^8 \][/tex]

### Conclusion

Hence, the correct simplification of the expression [tex]\(\left(6 x^2 y\right)^2 \left(y^2\right)^3\)[/tex] is:
[tex]\[ 36 x^4 y^8 \][/tex]

Therefore, the correct option is:
[tex]\[ \boxed{36 x^4 y^8} \][/tex]