Choose the correct simplification of the expression [tex]-5 x^2\left(4 x - 6 x^2 - 3\right)[/tex].

A. [tex]30 x^4 - 20 x^3 + 15 x^2[/tex]

B. [tex]-11 x^4 - x^3 - 8 x^2[/tex]

C. [tex]-30 x^4 + 20 x^3 - 15 x^2[/tex]

D. [tex]30 x^4 + 20 x^3 + 15 x^2[/tex]



Answer :

To simplify the expression [tex]\(-5 x^2(4 x - 6 x^2 - 3)\)[/tex], we'll take it step by step by distributing [tex]\(-5 x^2\)[/tex] to each term inside the parentheses:

Given expression:
[tex]\[ -5 x^2 (4 x - 6 x^2 - 3) \][/tex]

Step 1: Distribute [tex]\(-5 x^2\)[/tex] to [tex]\(4 x\)[/tex]:
[tex]\[ -5 x^2 \cdot 4 x = -20 x^3 \][/tex]

Step 2: Distribute [tex]\(-5 x^2\)[/tex] to [tex]\(-6 x^2\)[/tex]:
[tex]\[ -5 x^2 \cdot (-6 x^2) = 30 x^4 \][/tex]

Step 3: Distribute [tex]\(-5 x^2\)[/tex] to [tex]\(-3\)[/tex]:
[tex]\[ -5 x^2 \cdot (-3) = 15 x^2 \][/tex]

Now we combine all these results:
[tex]\[ 30 x^4 - 20 x^3 + 15 x^2 \][/tex]

Hence, the correct simplification of the expression [tex]\(-5 x^2(4 x - 6 x^2 - 3)\)[/tex] is:
[tex]\[ -30 x^4 + 20 x^3 - 15 x^2 \][/tex]

Therefore, the correct choice is:
[tex]\[ \boxed{-30 x^4 + 20 x^3 - 15 x^2} \][/tex]