Answer :

Let's start by finding both [tex]\( p(x) \)[/tex] and [tex]\( q(x) \)[/tex].

Given:
[tex]\[ p(x) = x + 3 \][/tex]
[tex]\[ q(x) = x - 2 \][/tex]

We want to find the value of [tex]\( p(x) \cdot q(x) \)[/tex].

First, let's choose a value for [tex]\( x \)[/tex]. In this case, let's use [tex]\( x = 4 \)[/tex].

1. Calculate [tex]\( p(4) \)[/tex]:
[tex]\[ p(4) = 4 + 3 = 7 \][/tex]

2. Calculate [tex]\( q(4) \)[/tex]:
[tex]\[ q(4) = 4 - 2 = 2 \][/tex]

Now, we need to find the product [tex]\( p(4) \cdot q(4) \)[/tex]:
[tex]\[ p(4) \cdot q(4) = 7 \cdot 2 = 14 \][/tex]

Thus, the value of [tex]\( p(x) \cdot q(x) \)[/tex] when [tex]\( x = 4 \)[/tex] is [tex]\( 14 \)[/tex].

Therefore, the answer is:
[tex]\[ \boxed{14} \][/tex]