The goals against average [tex]\( (A) \)[/tex] for a professional hockey goalie is determined using the formula [tex]\( A = 60 \left( \frac{g}{t} \right) \)[/tex]. In the formula, [tex]\( g \)[/tex] represents the number of goals scored against the goalie and [tex]\( t \)[/tex] represents the time played, in minutes.

Which is an equivalent equation solved for [tex]\( g \)[/tex]?

A. [tex]\( \frac{A t}{60} = g \)[/tex]
B. [tex]\( \frac{A}{60 t} = g \)[/tex]
C. [tex]\( \frac{60 A}{t} = g \)[/tex]
D. [tex]\( 60 A t = g \)[/tex]



Answer :

Certainly! Let's solve the given equation [tex]\( A = 60 \left( \frac{g}{t} \right) \)[/tex] for [tex]\( g \)[/tex] step-by-step.

1. Write down the given formula:

[tex]\[ A = 60 \left( \frac{g}{t} \right) \][/tex]

2. Multiply both sides of the equation by [tex]\( t \)[/tex] to isolate [tex]\( g \)[/tex] on one side. This step helps us get rid of the denominator [tex]\( t \)[/tex]:

[tex]\[ A \cdot t = 60 \cdot g \][/tex]

3. Divide both sides of the equation by 60 to solve for [tex]\( g \)[/tex]:

[tex]\[ g = \frac{A \cdot t}{60} \][/tex]

So, the equivalent equation solved for [tex]\( g \)[/tex] is:

[tex]\[ \boxed{\frac{A \cdot t}{60} = g} \][/tex]

Therefore, the correct answer is:

[tex]\[ \frac{A t}{60}=g \][/tex]