Answered

If [tex]f(x) = 3x[/tex] and [tex]g(x) = \frac{1}{3}x[/tex], which expression could be used to verify that [tex]g(x)[/tex] is the inverse of [tex]f(x)[/tex]?

A. [tex]3x \left( \frac{x}{3} \right)[/tex]
B. [tex]\left( \frac{1}{3}x \right)(3x)[/tex]
C. [tex]\frac{1}{3}(3x)[/tex]
D. [tex]\frac{1}{3} \left( \frac{1}{3}x \right)[/tex]



Answer :

To verify that [tex]\( g(x) \)[/tex] is the inverse of [tex]\( f(x) \)[/tex], we need to confirm two conditions:

1. [tex]\( f(g(x)) = x \)[/tex]
2. [tex]\( g(f(x)) = x \)[/tex]

Let's evaluate each composition step-by-step to identify which expressions match these conditions.

Step 1: Finding [tex]\( f(g(x)) \)[/tex]

Given [tex]\( f(x) = 3x \)[/tex] and [tex]\( g(x) = \frac{1}{3}x \)[/tex], we first find [tex]\( f(g(x)) \)[/tex]:

[tex]\[ f(g(x)) = f\left(\frac{1}{3} x\right) \][/tex]

Substitute [tex]\( g(x) \)[/tex] into [tex]\( f \)[/tex]:

[tex]\[ f\left(\frac{1}{3} x\right) = 3 \left(\frac{1}{3} x\right) \][/tex]

Simplify the expression inside [tex]\( f \)[/tex]:

[tex]\[ 3 \left(\frac{1}{3} x\right) = \left(3 \cdot \frac{1}{3}\right) x = 1 \cdot x = x \][/tex]

Thus, [tex]\( f(g(x)) = x \)[/tex] verifies one of the conditions. The matching expression from the choices provided is:

[tex]\[ 3 \left(\frac{x}{3}\right) \][/tex]

Step 2: Finding [tex]\( g(f(x)) \)[/tex]

Next, we find [tex]\( g(f(x)) \)[/tex]:

[tex]\[ g(f(x)) = g(3x) \][/tex]

Substitute [tex]\( f(x) \)[/tex] into [tex]\( g \)[/tex]:

[tex]\[ g(3x) = \frac{1}{3} (3x) \][/tex]

Simplify the expression inside [tex]\( g \)[/tex]:

[tex]\[ \frac{1}{3} (3x) = \left(\frac{1}{3} \cdot 3\right) x = 1 \cdot x = x \][/tex]

Thus, [tex]\( g(f(x)) = x \)[/tex] verifies the second condition. The matching expression from the choices provided is:

[tex]\[ \frac{1}{3}(3 x) \][/tex]

Therefore, the following two expressions can be used to verify that [tex]\( g(x) \)[/tex] is the inverse of [tex]\( f(x) \)[/tex]:

1. [tex]\( 3 x\left(\frac{x}{3}\right) \)[/tex]
2. [tex]\( \frac{1}{3}(3 x) \)[/tex]

Thus, the correct expressions from the choices are:

[tex]\[3 x\left(\frac{x}{3}\right) \quad \text{and} \quad \frac{1}{3}(3 x)\][/tex]