What is [tex][tex]$720^{\circ}$[/tex][/tex] converted to radians?

A. [tex]\frac{1}{4}[/tex]

B. [tex]\frac{\pi}{4}[/tex]

C. [tex]\frac{4}{\pi}[/tex]

D. [tex]4\pi[/tex]



Answer :

Sure! Let's convert [tex]\( 720^\circ \)[/tex] to radians with a step-by-step solution.

1. Understand the Conversion Factor:
- To convert degrees to radians, we use the conversion factor [tex]\(\frac{\pi \text{ radians}}{180^\circ}\)[/tex]. This means that [tex]\(1^\circ = \frac{\pi}{180} \text{ radians}\)[/tex].

2. Write the Conversion Formula:
[tex]\[ \text{Radians} = \text{Degrees} \times \frac{\pi \text{ radians}}{180^\circ} \][/tex]

3. Apply this Formula to [tex]\(720^\circ\)[/tex]:
[tex]\[ 720^\circ \times \frac{\pi \text{ radians}}{180^\circ} \][/tex]

4. Simplify the Multiplication:
- Multiply [tex]\(720\)[/tex] by [tex]\(\frac{\pi}{180}\)[/tex]:
[tex]\[ 720 \times \frac{\pi}{180} = \frac{720\pi}{180} \][/tex]

5. Perform the Division:
- Divide [tex]\(720\)[/tex] by [tex]\(180\)[/tex]:
[tex]\[ \frac{720}{180} = 4 \][/tex]
Therefore:
[tex]\[ \frac{720\pi}{180} = 4\pi \][/tex]

6. Final Conversion:
- Hence, [tex]\(720^\circ\)[/tex] converted to radians is [tex]\(4\pi\)[/tex].

So, the correct answer is:
[tex]\[ 4\pi \][/tex]