Answer :
To balance the given chemical equation:
[tex]\[ \text{BaCl}_2(\text{aq}) + \text{Na}_2\text{CO}_3(\text{aq}) \rightarrow \text{BaCO}_3(\text{s}) + \text{NaCl}(\text{aq}) \][/tex]
we need to ensure that the number of each type of atom on both sides of the equation is equal.
1. Count the atoms on the left side of the equation:
- [tex]\( \text{Ba} \)[/tex]: 1
- [tex]\( \text{Cl} \)[/tex]: 2
- [tex]\( \text{Na} \)[/tex]: 2
- [tex]\( \text{C} \)[/tex]: 1
- [tex]\( \text{O} \)[/tex]: 3
2. Count the atoms on the right side of the equation:
- [tex]\( \text{Ba} \)[/tex]: 1
- [tex]\( \text{Cl} \)[/tex]: 1
- [tex]\( \text{Na} \)[/tex]: 1
- [tex]\( \text{C} \)[/tex]: 1
- [tex]\( \text{O} \)[/tex]: 3
From this initial count, it is clear that the chlorine ([tex]\( \text{Cl} \)[/tex]) and sodium ([tex]\( \text{Na} \)[/tex]) atoms are not balanced.
3. Balance the chlorine (Cl) and sodium (Na) atoms:
- On the left side, we have 2 chlorine atoms and 2 sodium atoms.
- On the right side, we adjust the coefficient of [tex]\( \text{NaCl} \)[/tex] to balance these atoms.
By placing a coefficient of 2 in front of [tex]\( \text{NaCl} \)[/tex]:
[tex]\[ \text{BaCl}_2(\text{aq}) + \text{Na}_2\text{CO}_3(\text{aq}) \rightarrow \text{BaCO}_3(\text{s}) + 2 \text{NaCl}(\text{aq}) \][/tex]
Now, let's recount the atoms on the right side:
- [tex]\( \text{Ba} \)[/tex]: 1
- [tex]\( \text{Cl} \)[/tex]: 2
- [tex]\( \text{Na} \)[/tex]: 2
- [tex]\( \text{C} \)[/tex]: 1
- [tex]\( \text{O} \)[/tex]: 3
4. Verify that both sides are balanced:
- Left side:
- [tex]\( \text{Ba} \)[/tex]: 1
- [tex]\( \text{Cl} \)[/tex]: 2
- [tex]\( \text{Na} \)[/tex]: 2
- [tex]\( \text{C} \)[/tex]: 1
- [tex]\( \text{O} \)[/tex]: 3
- Right side:
- [tex]\( \text{Ba} \)[/tex]: 1
- [tex]\( \text{Cl} \)[/tex]: 2
- [tex]\( \text{Na} \)[/tex]: 2
- [tex]\( \text{C} \)[/tex]: 1
- [tex]\( \text{O} \)[/tex]: 3
Since the counts for all atoms are equal on both sides, the equation is now balanced.
The required coefficient to place in front of [tex]\( \text{NaCl} \)[/tex] to balance the equation is [tex]\( \boxed{2} \)[/tex].
[tex]\[ \text{BaCl}_2(\text{aq}) + \text{Na}_2\text{CO}_3(\text{aq}) \rightarrow \text{BaCO}_3(\text{s}) + \text{NaCl}(\text{aq}) \][/tex]
we need to ensure that the number of each type of atom on both sides of the equation is equal.
1. Count the atoms on the left side of the equation:
- [tex]\( \text{Ba} \)[/tex]: 1
- [tex]\( \text{Cl} \)[/tex]: 2
- [tex]\( \text{Na} \)[/tex]: 2
- [tex]\( \text{C} \)[/tex]: 1
- [tex]\( \text{O} \)[/tex]: 3
2. Count the atoms on the right side of the equation:
- [tex]\( \text{Ba} \)[/tex]: 1
- [tex]\( \text{Cl} \)[/tex]: 1
- [tex]\( \text{Na} \)[/tex]: 1
- [tex]\( \text{C} \)[/tex]: 1
- [tex]\( \text{O} \)[/tex]: 3
From this initial count, it is clear that the chlorine ([tex]\( \text{Cl} \)[/tex]) and sodium ([tex]\( \text{Na} \)[/tex]) atoms are not balanced.
3. Balance the chlorine (Cl) and sodium (Na) atoms:
- On the left side, we have 2 chlorine atoms and 2 sodium atoms.
- On the right side, we adjust the coefficient of [tex]\( \text{NaCl} \)[/tex] to balance these atoms.
By placing a coefficient of 2 in front of [tex]\( \text{NaCl} \)[/tex]:
[tex]\[ \text{BaCl}_2(\text{aq}) + \text{Na}_2\text{CO}_3(\text{aq}) \rightarrow \text{BaCO}_3(\text{s}) + 2 \text{NaCl}(\text{aq}) \][/tex]
Now, let's recount the atoms on the right side:
- [tex]\( \text{Ba} \)[/tex]: 1
- [tex]\( \text{Cl} \)[/tex]: 2
- [tex]\( \text{Na} \)[/tex]: 2
- [tex]\( \text{C} \)[/tex]: 1
- [tex]\( \text{O} \)[/tex]: 3
4. Verify that both sides are balanced:
- Left side:
- [tex]\( \text{Ba} \)[/tex]: 1
- [tex]\( \text{Cl} \)[/tex]: 2
- [tex]\( \text{Na} \)[/tex]: 2
- [tex]\( \text{C} \)[/tex]: 1
- [tex]\( \text{O} \)[/tex]: 3
- Right side:
- [tex]\( \text{Ba} \)[/tex]: 1
- [tex]\( \text{Cl} \)[/tex]: 2
- [tex]\( \text{Na} \)[/tex]: 2
- [tex]\( \text{C} \)[/tex]: 1
- [tex]\( \text{O} \)[/tex]: 3
Since the counts for all atoms are equal on both sides, the equation is now balanced.
The required coefficient to place in front of [tex]\( \text{NaCl} \)[/tex] to balance the equation is [tex]\( \boxed{2} \)[/tex].