Answer :
Of course! Let's simplify the given algebraic expression step-by-step.
Given expression:
[tex]\[ (2b - b) + c + 3b + 7 \][/tex]
### Step 1: Simplify within the parentheses
First, simplify the expression inside the parentheses:
[tex]\[ 2b - b \][/tex]
Subtract [tex]\( b \)[/tex] from [tex]\( 2b \)[/tex]:
[tex]\[ 2b - b = b \][/tex]
Now, substitute this result back into the expression:
[tex]\[ b + c + 3b + 7 \][/tex]
### Step 2: Combine like terms
Combine the terms that involve [tex]\( b \)[/tex] (the like terms):
[tex]\[ b + 3b \][/tex]
Add the coefficients of [tex]\( b \)[/tex]:
[tex]\[ 1b + 3b = 4b \][/tex]
Now, the expression becomes:
[tex]\[ 4b + c + 7 \][/tex]
### Final expression:
The simplified expression is:
[tex]\[ 4b + c + 7 \][/tex]
So, the result of the simplification is:
[tex]\[ 4b + c + 7 \][/tex]
Given expression:
[tex]\[ (2b - b) + c + 3b + 7 \][/tex]
### Step 1: Simplify within the parentheses
First, simplify the expression inside the parentheses:
[tex]\[ 2b - b \][/tex]
Subtract [tex]\( b \)[/tex] from [tex]\( 2b \)[/tex]:
[tex]\[ 2b - b = b \][/tex]
Now, substitute this result back into the expression:
[tex]\[ b + c + 3b + 7 \][/tex]
### Step 2: Combine like terms
Combine the terms that involve [tex]\( b \)[/tex] (the like terms):
[tex]\[ b + 3b \][/tex]
Add the coefficients of [tex]\( b \)[/tex]:
[tex]\[ 1b + 3b = 4b \][/tex]
Now, the expression becomes:
[tex]\[ 4b + c + 7 \][/tex]
### Final expression:
The simplified expression is:
[tex]\[ 4b + c + 7 \][/tex]
So, the result of the simplification is:
[tex]\[ 4b + c + 7 \][/tex]