What is the solution to [tex][tex]$\log _5(x+30)=3$[/tex][/tex]?

A. [tex][tex]$x=-95$[/tex][/tex]

B. [tex][tex]$x=-5$[/tex][/tex]

C. [tex][tex]$x=5$[/tex][/tex]

D. [tex][tex]$x=95$[/tex][/tex]



Answer :

To solve the equation [tex]\(\log_5(x + 30) = 3\)[/tex], we need to convert the logarithmic equation into an exponential form.

1. Start with the given equation:
[tex]\[ \log_5(x + 30) = 3 \][/tex]

2. Recall that if [tex]\(\log_b(a) = c\)[/tex], then [tex]\(b^c = a\)[/tex]. In this case, [tex]\(b = 5\)[/tex], [tex]\(a = x + 30\)[/tex], and [tex]\(c = 3\)[/tex]. Therefore, we rewrite the equation as:
[tex]\[ 5^3 = x + 30 \][/tex]

3. Calculate [tex]\(5^3\)[/tex]:
[tex]\[ 5^3 = 125 \][/tex]

4. Now, the equation becomes:
[tex]\[ 125 = x + 30 \][/tex]

5. To solve for [tex]\(x\)[/tex], subtract 30 from both sides:
[tex]\[ 125 - 30 = x \][/tex]

6. Perform the subtraction:
[tex]\[ 125 - 30 = 95 \][/tex]

So, the solution is:
[tex]\[ x = 95 \][/tex]

Thus, the correct answer is [tex]\(x = 95\)[/tex].