Answer :
To balance the chemical equation:
[tex]\[ \text{Li}_2\text{O} + \text{H}_2\text{O} \rightarrow \text{LiOH} \][/tex]
We need to ensure that the number of atoms of each element on the reactant side is equal to the number of atoms on the product side. Here is the step-by-step process to balance the equation:
1. Identify the number of atoms for each element in the unbalanced equation:
- Reactants:
- [tex]\( \text{Li}_2\text{O} \)[/tex]: 2 Li atoms, 1 O atom
- [tex]\( \text{H}_2\text{O} \)[/tex]: 2 H atoms, 1 O atom
- Products:
- [tex]\( \text{LiOH} \)[/tex]: 1 Li atom, 1 O atom, 1 H atom
2. Count the total number of atoms for each element on each side:
- Reactants:
- 2 Li (from [tex]\( \text{Li}_2\text{O} \)[/tex])
- 1 O (from [tex]\( \text{Li}_2\text{O} \)[/tex]) + 1 O (from [tex]\( \text{H}_2\text{O} \)[/tex]) = 2 O
- 2 H (from [tex]\( \text{H}_2\text{O} \)[/tex])
- Products:
- 1 Li (from [tex]\( \text{LiOH} \)[/tex])
- 1 O (from [tex]\( \text{LiOH} \)[/tex])
- 1 H (from [tex]\( \text{LiOH} \)[/tex])
3. Determine the coefficients to balance the equation:
We observe that we need more Li and H in the products to match the reactants:
- If we multiply [tex]\( \text{LiOH} \)[/tex] by 2, the number of atoms on the product side becomes:
- Products (after multiplying [tex]\( \text{LiOH} \)[/tex] by 2):
- 2 Li (2 \times 1 Li)
- 2 O (2 \times 1 O)
- 2 H (2 \times 1 H)
4. Verify that the equation is balanced:
- Reactants:
- 2 Li
- 2 O
- 2 H
- Products:
- 2 Li
- 2 O
- 2 H
When we compare both sides, we see that the number of atoms of each element is equal. The balanced equation is:
[tex]\[ \text{Li}_2\text{O} + \text{H}_2\text{O} \rightarrow 2 \text{LiOH} \][/tex]
Therefore, the coefficients for the balanced equation are:
[tex]\[ \checkmark \text{Li}_2\text{O} + (1) \text{H}_2\text{O} \rightarrow (2) \text{LiOH} \][/tex]
So the balanced chemical equation is:
[tex]\[ \text{Li}_2\text{O} + \text{H}_2\text{O} \rightarrow 2 \text{LiOH} \][/tex]
[tex]\[ \text{Li}_2\text{O} + \text{H}_2\text{O} \rightarrow \text{LiOH} \][/tex]
We need to ensure that the number of atoms of each element on the reactant side is equal to the number of atoms on the product side. Here is the step-by-step process to balance the equation:
1. Identify the number of atoms for each element in the unbalanced equation:
- Reactants:
- [tex]\( \text{Li}_2\text{O} \)[/tex]: 2 Li atoms, 1 O atom
- [tex]\( \text{H}_2\text{O} \)[/tex]: 2 H atoms, 1 O atom
- Products:
- [tex]\( \text{LiOH} \)[/tex]: 1 Li atom, 1 O atom, 1 H atom
2. Count the total number of atoms for each element on each side:
- Reactants:
- 2 Li (from [tex]\( \text{Li}_2\text{O} \)[/tex])
- 1 O (from [tex]\( \text{Li}_2\text{O} \)[/tex]) + 1 O (from [tex]\( \text{H}_2\text{O} \)[/tex]) = 2 O
- 2 H (from [tex]\( \text{H}_2\text{O} \)[/tex])
- Products:
- 1 Li (from [tex]\( \text{LiOH} \)[/tex])
- 1 O (from [tex]\( \text{LiOH} \)[/tex])
- 1 H (from [tex]\( \text{LiOH} \)[/tex])
3. Determine the coefficients to balance the equation:
We observe that we need more Li and H in the products to match the reactants:
- If we multiply [tex]\( \text{LiOH} \)[/tex] by 2, the number of atoms on the product side becomes:
- Products (after multiplying [tex]\( \text{LiOH} \)[/tex] by 2):
- 2 Li (2 \times 1 Li)
- 2 O (2 \times 1 O)
- 2 H (2 \times 1 H)
4. Verify that the equation is balanced:
- Reactants:
- 2 Li
- 2 O
- 2 H
- Products:
- 2 Li
- 2 O
- 2 H
When we compare both sides, we see that the number of atoms of each element is equal. The balanced equation is:
[tex]\[ \text{Li}_2\text{O} + \text{H}_2\text{O} \rightarrow 2 \text{LiOH} \][/tex]
Therefore, the coefficients for the balanced equation are:
[tex]\[ \checkmark \text{Li}_2\text{O} + (1) \text{H}_2\text{O} \rightarrow (2) \text{LiOH} \][/tex]
So the balanced chemical equation is:
[tex]\[ \text{Li}_2\text{O} + \text{H}_2\text{O} \rightarrow 2 \text{LiOH} \][/tex]