What are the mean, median, and mode of the following data set?

\begin{tabular}{|l|l|l|l|l|}
\hline [tex]$3 / 4$[/tex] & [tex]$2 / 5$[/tex] & [tex]$1 / 10$[/tex] & [tex]$3 / 4$[/tex] & [tex]$1 / 4$[/tex] \\
\hline \hline
\end{tabular}

a. mean: [tex]$1 / 10$[/tex], median: [tex]$1 / 10$[/tex], mode: [tex]$3 / 4$[/tex]
b. mean: [tex]$9 / 20$[/tex], median: [tex]$1 / 10$[/tex], mode: [tex]$3 / 4$[/tex]
c. mean: [tex]$9 / 20$[/tex], median: [tex]$2 / 5$[/tex], mode: [tex]$3 / 4$[/tex]
d. mean: [tex]$2 / 5$[/tex], median: [tex]$4 / 9$[/tex], mode: [tex]$3 / 4$[/tex]

Please select the best answer from the choices provided:
A
B
C
D



Answer :

To find the mean, median, and mode of the given data set, we need to follow a few steps for each measure.

1. Convert the fractions to decimal form:

- [tex]\( \frac{3}{4} = 0.75 \)[/tex]
- [tex]\( \frac{2}{5} = 0.4 \)[/tex]
- [tex]\( \frac{1}{10} = 0.1 \)[/tex]
- [tex]\( \frac{3}{4} = 0.75 \)[/tex] (again)
- [tex]\( \frac{1}{4} = 0.25 \)[/tex]

So, the data set in decimal form is: [tex]\[ 0.75, 0.4, 0.1, 0.75, 0.25 \][/tex]

2. Calculate the mean:
The mean (or average) is the sum of the values divided by the number of values.

[tex]\[ \text{Mean} = \frac{0.75 + 0.4 + 0.1 + 0.75 + 0.25}{5} = \frac{2.25}{5} = 0.45 \][/tex]

3. Find the median:
The median is the middle value when the data set is ordered from smallest to largest.

Ordering the data:

[tex]\[ 0.1, 0.25, 0.4, 0.75, 0.75 \][/tex]

The middle value (third value) is 0.4.

[tex]\[ \text{Median} = 0.4 \][/tex]

4. Identify the mode:
The mode is the value that appears most frequently.

In the data set [tex]\( 0.75, 0.4, 0.1, 0.75, 0.25 \)[/tex], 0.75 appears twice, which is more frequently than any other data point.

[tex]\[ \text{Mode} = 0.75 \][/tex]

Based on these calculations, the correct values are:
- Mean: 0.45
- Median: 0.4
- Mode: 0.75

Given the provided choices:

a. mean: [tex]\( \frac{1}{10} \)[/tex], median: [tex]\( \frac{1}{10} \)[/tex], mode: [tex]\( \frac{3}{4} \)[/tex]
b. mean: [tex]\( \frac{9}{20} \)[/tex], median: [tex]\( \frac{1}{10} \)[/tex], mode: [tex]\( \frac{3}{4} \)[/tex]
c. mean: [tex]\( \frac{9}{20} \)[/tex], median: [tex]\( \frac{2}{5} \)[/tex], mode: [tex]\( \frac{3}{4} \)[/tex]
d. mean: [tex]\( \frac{2}{5} \)[/tex], median: [tex]\( \frac{4}{9} \)[/tex], mode: [tex]\( \frac{3}{4} \)[/tex]

Evaluating each:

- [tex]\( \frac{9}{20} \)[/tex] is equivalent to 0.45 (mean)
- [tex]\( \frac{2}{5} \)[/tex] is equivalent to 0.4 (median)
- [tex]\( \frac{3}{4} \)[/tex] is equivalent to 0.75 (mode)

Therefore, the best answer is:

c. mean: [tex]\( \frac{9}{20} \)[/tex], median: [tex]\( \frac{2}{5} \)[/tex], mode: [tex]\( \frac{3}{4} \)[/tex]