Which ordered pair makes both inequalities true?

[tex]\[
\begin{array}{l}
y \leq -x + 1 \\
y \ \textgreater \ x
\end{array}
\][/tex]



Answer :

To determine the ordered pair [tex]\((x, y)\)[/tex] that satisfies both inequalities:
[tex]\[ \begin{array}{l} y \leq -x + 1, \\ y > x, \end{array} \][/tex]
let's analyze and check for the point that meets these conditions.

1. Inequality 1: [tex]\(y \leq -x + 1\)[/tex]

2. Inequality 2: [tex]\(y > x\)[/tex]

By graphing or testing different pairs, let’s verify which ordered pair satisfies both inequalities.

Let's test a few candidate points to see if they meet both criteria:

- Point [tex]\((-1, 0)\)[/tex]:
- For [tex]\(y \leq -x + 1\)[/tex]:
[tex]\[ 0 \leq -(-1) + 1 \quad \text{or} \quad 0 \leq 2 \quad \text{(True)} \][/tex]
- For [tex]\(y > x\)[/tex]:
[tex]\[ 0 > -1 \quad \text{(True)} \][/tex]

Since [tex]\((-1, 0)\)[/tex] satisfies both inequalities, it is the ordered pair that makes both inequalities true.

Thus, the ordered pair [tex]\((x, y)\)[/tex] that satisfies the given inequalities is:
[tex]\[ (-1, 0). \][/tex]