Answer :
Sure! Let's fill in the blanks step-by-step for each row of the table.
First row:
1. The fraction given is [tex]\( \frac{1}{2} \)[/tex].
2. The decimal representation of [tex]\( \frac{1}{2} \)[/tex] is 0.5.
3. To convert [tex]\( \frac{1}{2} \)[/tex] to a percentage, we multiply by 100: [tex]\( 0.5 \times 100 = 50\% \)[/tex].
So, the first row will be:
[tex]\[ \begin{array}{|c|c|c|} \hline \frac{1}{2} & 0.5 & 50\% \\ \hline \end{array} \][/tex]
Second row:
1. The decimal given is 0.25.
2. To convert 0.25 to a fraction, it is [tex]\( \frac{25}{100} \)[/tex] which simplifies to [tex]\( \frac{1}{4} \)[/tex].
3. To convert 0.25 to a percentage, we multiply by 100: [tex]\( 0.25 \times 100 = 25\% \)[/tex].
So, the second row will be:
[tex]\[ \begin{array}{|c|c|c|} \hline \frac{1}{4} & 0.25 & 25\% \\ \hline \end{array} \][/tex]
Third row:
1. The percentage given is [tex]\( 10\% \)[/tex].
2. To convert [tex]\( 10\% \)[/tex] to a decimal, we divide by 100: [tex]\( 10 \div 100 = 0.1 \)[/tex].
3. To convert [tex]\( 10\% \)[/tex] to a fraction, it is [tex]\( \frac{10}{100} \)[/tex] which simplifies to [tex]\( \frac{1}{10} \)[/tex].
So, the third row will be:
[tex]\[ \begin{array}{|c|c|c|} \hline \frac{1}{10} & 0.1 & 10\% \\ \hline \end{array} \][/tex]
Therefore, the completely filled table is:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Fraction} & \text{Decimal} & \text{Percentage} \\ \hline \frac{1}{2} & 0.5 & 50\% \\ \hline \frac{1}{4} & 0.25 & 25\% \\ \hline \frac{1}{10} & 0.1 & 10\% \\ \hline \end{array} \][/tex]
First row:
1. The fraction given is [tex]\( \frac{1}{2} \)[/tex].
2. The decimal representation of [tex]\( \frac{1}{2} \)[/tex] is 0.5.
3. To convert [tex]\( \frac{1}{2} \)[/tex] to a percentage, we multiply by 100: [tex]\( 0.5 \times 100 = 50\% \)[/tex].
So, the first row will be:
[tex]\[ \begin{array}{|c|c|c|} \hline \frac{1}{2} & 0.5 & 50\% \\ \hline \end{array} \][/tex]
Second row:
1. The decimal given is 0.25.
2. To convert 0.25 to a fraction, it is [tex]\( \frac{25}{100} \)[/tex] which simplifies to [tex]\( \frac{1}{4} \)[/tex].
3. To convert 0.25 to a percentage, we multiply by 100: [tex]\( 0.25 \times 100 = 25\% \)[/tex].
So, the second row will be:
[tex]\[ \begin{array}{|c|c|c|} \hline \frac{1}{4} & 0.25 & 25\% \\ \hline \end{array} \][/tex]
Third row:
1. The percentage given is [tex]\( 10\% \)[/tex].
2. To convert [tex]\( 10\% \)[/tex] to a decimal, we divide by 100: [tex]\( 10 \div 100 = 0.1 \)[/tex].
3. To convert [tex]\( 10\% \)[/tex] to a fraction, it is [tex]\( \frac{10}{100} \)[/tex] which simplifies to [tex]\( \frac{1}{10} \)[/tex].
So, the third row will be:
[tex]\[ \begin{array}{|c|c|c|} \hline \frac{1}{10} & 0.1 & 10\% \\ \hline \end{array} \][/tex]
Therefore, the completely filled table is:
[tex]\[ \begin{array}{|c|c|c|} \hline \text{Fraction} & \text{Decimal} & \text{Percentage} \\ \hline \frac{1}{2} & 0.5 & 50\% \\ \hline \frac{1}{4} & 0.25 & 25\% \\ \hline \frac{1}{10} & 0.1 & 10\% \\ \hline \end{array} \][/tex]